SHOW YOUR WORK COMPLETELY AND NEATLY. DON'T WRITE MORE THAN YOU NEED TO.

Total points = 40.

- 1. Let S be a regular C^2 surface.
- a) (4 points) Define precisely what is meant by the first fundamental form of S (without mentioning parametrizations).
- b) (6 points) Given a regular parametrization of a piece of S, explain what is meant by the corresponding matrix associated to its first fundamental form.
- c) (5 points) For the regular parametrized surface defined by $\phi(u,v)=(u^2v,\ u+v,\ uv^2)$ for 1< u,v<3 compute the matrix corresponding to its first fundamental form at the point $\phi(2,2)$ of S.
- 2. Let S be a regular C^2 oriented surface with orientation n.
- a) (4 points) Define what is meant by saying that n is an orientation for S (without mentioning parametrizations).
- b) (3 points) Define what is meant by the Gauss map for (S, n).
- c) (4 points) Define what it means for a parametrization of a part of S to be positively oriented with respect to n.
- d) (8 points) Define what is meant by the differential Dn (denoted by dn in our textbook) of the Gauss map.
- e) (5 points) Given a positively oriented parametrization ϕ of a part of S, with its corresponding canonical basis tangent vectors ϕ_u and ϕ_v , state how to compute $Dn(\phi_u)$ and $Dn(\phi_v)$ in terms of ϕ . (No proof needed.)