
University of California, Berkeley
College of Engineering

Computer Science Division – EECS
Spring 2011 Prof. Michael J. Franklin

MIDTERM I
CS 186 Introduction to Database Systems

NAME: ____________________________ STUDENT ID:__________________
IMPORTANT: Circle the last two letters of your class account:
 cs186 a b c d e f g h i j k l m n o p q r s t u v w x y z

 a b c d e f g h i j k l m n o p q r s t u v w x y z

DISCUSSION SECTION DAY & TIME:____________ TA NAME: ___________
This is a closed book examination – but you are allowed one 8.5” x 11” sheet of notes (double
sided). You should answer as many questions as possible. Partial credit will be given where
appropriate. There are 100 points in all. You should read all of the questions before starting the
exam, as some of the questions are substantially more time-consuming than others.
Write all of your answers directly on this paper. Be sure to clearly indicate your final answer
for each question. Also, be sure to state any assumptions that you are making in your answers.

GOOD LUCK!!!

Problem Possible Score
1. Buffer Manager and Storage 26

2. B+ Trees 30

3. Hash Indexes 15

4. Transactions and Concurrency Control 29

TOTAL 100

 SID:____________________

CS 186 Midterm I February 24, 2011 Page 2 of 10

Question 1 – Buffer Management and Storage [5 parts, 26 points total]
For parts (a) to (d), circle your answer and be sure to state why in a sentence or two. List any
assumptions you are making.

a) [3 points] Which access pattern would see a greater improvement in performance when
upgrading the storage media from hard disk drives to solid state (e.g., flash) drives?

i) Sequential scan ii) Random access iii) Both improve the same

Why?

For random access, SSD doesn’t have to rotate (seek).

b) [3 points] Consider an access pattern where there are lookups of many random keys using a
static hash index that has no overflow pages. If the hash index is larger than the buffer pool,
which buffer replacement policy will provide the best hit rate?

i) LRU ii) MRU iii) Random iv) All are similar
Why?

For random access without any hierarchy (static hash without no overflow pages), there is no way
to predict which page is needed in the future.

c) [3 points] Consider an access pattern where the database does repeated sequential scans of a
table (sequential flooding). If the size of the table is slightly greater than the buffer pool, which
buffer replacement policy will provide a significantly better hit rate than the others?

i) LRU ii) MRU iii) LRI iv) All are similar
Why?

LRU and LRI suffer from sequential flooding (0% hit rate).

d) [3 points] Why is physical data independence useful? Give a simple example.

The logical schema can remain unchanged even though the physical storage changes. Some
examples are: Addition or removal of an index, partitioning of table across multiple disks,
partitioning of table across multiple machines…

 SID:____________________

CS 186 Midterm I February 24, 2011 Page 3 of 10

Question 1 – Buffer Management and Storage (continued)
e) [14 points] Consider a database system with 4 buffer frames (#1, #2, #3, #4) and a file of 6 disk
pages (A, B, C, D, E, F). Assume that you start with an empty buffer pool. A sequence of requests
is made to the buffer manager as described in the Request column (below). At certain times a Pin
request is immediately followed by an Unpin request (represented as Pin/Unpin), but other times
Pin and Unpin requests happen in an interlaced manner with other requests.
Fill in the following table showing the buffer contents after the completion of each operation using
the CLOCK page replacement policy, as described in the book and HW 1. For each page, indicate
the pin count (PC) and for unpinned pages, indicate the value of the reference bit (1 or 0). You
should mark unchanged buffer frames with “ditto” (“). As in HW 1 we make the following
assumptions in the clock policy:

The pointer doesn't move when filling a free frame in buffer or on a buffer hit.
The pointer advances after replacing a buffer frame.

Time	
 Request	

Buffer	
 Frames	

#1	
 #2	
 #3	
 #4	

T1	

	

Pin	
 A	
 A
PC=1

Empty Empty Empty

T2	

	

Pin/Unpin	
 B	
 “ B
PC=0, Ref=1

“ “

T3	

	

Pin/Unpin	
 C	
 “ “ C
PC=0, Ref=1

“

T4	

	

Pin/Unpin	
 D	
 “ “ “ D
PC=0, Ref=1

T5	

	

Pin	
 A	
 A
PC=2

“ “ “

T6	

	

Unpin	
 A	
 A
PC=1

“ “ “

T7	

	

Pin/Unpin	
 B	
 “ “ “ “

T8	

	

Pin/Unpin	
 E	
 “ E
PC=0, Ref=1

C
PC=0, Ref=0

D
PC=0, Ref=0

T9	

	

Pin/Unpin	
 F	
 “ “ F
PC=0, Ref=1

“

T10	

	

Pin/Unpin	
 B	
 “ “ “ B
PC=0, Ref=1

T11	

	

Pin	
 F	
 “ “ F
PC=1

“

 SID:____________________

CS 186 Midterm I February 24, 2011 Page 4 of 10

Question 2 – B+ Trees [7 parts, 30 points total]
For parts (a)-(c), consider the following B+ tree with order d=2 and a composite search key and
use the B+tree algorithms discussed in class and in the book.

a) [2 points] What is the maximum number of keys you could insert that would NOT change the
height of the tree?
8 keys
b) [5 points] For the original tree above, draw the index after inserting a data entry with key h,2.
 If the contents of a page do not change, please write the page label (e.g,, p1, p2, …) rather than
drawing the page.

or

c) [5 points] Starting with the original tree above, draw the index after deleting the data entry
with key c,3. If the contents of a page do not change, simply write the page label.

 SID:____________________

CS 186 Midterm I February 24, 2011 Page 5 of 10

Question 2 – B+ Trees (continued)

For parts (d) – (g), consider the following scenario: The latest hot Internet start up, Pawbook (a
social network for pets), is having performance problems and they suspect the cause is their
database system. They hire you to help. The Pawbook database has a USERS table containing a
record for each user. When someone logs into Pawbook, an equality lookup query is issued on the
USERS table to find the record associated with the USER_ID. The USERS table is organized as a
sequentially allocated sorted file, sorted on USER_ID, and there are no indexes.

The system has the following parameters (note – the fact that all values are powers of 2 should
make your calculations easy, and you can report answers using powers of 2 as well):

The USERS table contains 4194304 (222) records
A USERS data record is 256 (28) bytes long
Each page is 16384 (214) bytes, and we ignore any page header overhead so 64 (26)

USERS records can fit in each page
There is only one disk and it can support up to 256 (28) random IOs per second

d) [5 points] You notice that there are no indexes on USERS. Your first step is to calculate how
many disk IOs it takes to do a USER_ID lookup on the current table. In the worst case, how many
disk IOs will it take to use binary search to find a USER_ID in the USERS table? Assume NO
pages of USERS are in the buffer pool at the start of this query. Please give exact IOs, and not
Big-O notation. Circle your final answer.

222 records / 26 records per page = 216 pages
log2(216) = 16 IOs
216 is even, so in the worst case, one more IO is required
17 IOs

e) [5 points] Having taken CS186, you know that B+ tree indexes can improve lookup
performance over binary search. You want to build a B+ tree index on the USERS table with the
search key on USER_ID to speed up lookups. Assume that the root node of the tree is
ALWAYS in the buffer pool and that you use Alternative (1) for the leaves of the index, so all
the full data records reside in the leaf nodes. What is the minimum fanout of the B+ tree index that
would be required to support the 128 queries per second? Circle your final answer.

256 IOs per second / 128 queries per second = 2 IO per query
root is always in buffer pool, so tree can be at most 2 non-leaf levels and 1 leaf level.
logfanout(216)=2
216 pages = fanout2
(216)1/2 = fanout = 28 = 256

 SID:____________________

CS 186 Midterm I February 24, 2011 Page 6 of 10

Question 2 – B+ Trees (continued)

f) [5 points] Database systems often perform INDEX-ONLY scans when all the fields in the
query are in the search key of the index, and scans the index data entries, without having to scan
the data file. Knowing this, you create a B+ tree on the USERS table with a search key on the
AGE field. You use Alternative (2) so that the data entries are only 24 = 16 bytes. Assuming all
the non-leaf pages of the B+ tree are already in the buffer pool, how many I/Os will it take to
perform an INDEX-ONLY scan to read all the AGE values from USERS (say, to calculate the
average age of all the members)? Circle your final answer.

214 bytes per page / 24 bytes per record = 210 record per page
222 records / 210 records per page = 212 leaf pages
No leaf is in the buffer pool yet so the INDEX-ONLY scan requires 212 IOs

g) [3 points] Given the huge performance benefits you got by doing an INDEX-ONLY scan for
the “average AGE” query, the VP of Marketing suggests that you create indexes for ALL of the
fields in the USERS table. Briefly state why this is probably a bad idea (i.e., what are the costs
of having too many indexes?).

Having too many indexes causes too much overhead when updating/inserting/deleting from the
table, since each index will have to be updated.
A less important reason is that it will use up extra disk space.

 SID:____________________

CS 186 Midterm I February 24, 2011 Page 7 of 10

Question 3 – Hash Indexes [4 parts, 15 points total]
For parts (a) and (b) circle your answer and be sure to state why in a sentence or two. List any
assumptions you are making.

a) [3 points] An extendible hashing structure can never contain overflow pages.

i) True ii) False

Why? Although extendible hashing usually doesn’t contain overflow pages, it is possible to have
overflow pages if a large number records with the same search keys are inserted.

b) [3 points] Your company asks you to design a hashing mechanism to index old archive data.
You know that you will not performing insertion or deletions on the data, but will be querying it
for equality searches on the search key. Which hashing method is most appropriate?

i) Static ii) Extendible iii) Linear iv) all are equally good

Why? Since there is no insertion nor deletion, static hashing doesn’t have the overhead of
maintaining extra levels of indirection or keeping global/local depth counts. Extendible hashing
may need another I/O if the table does not fit into memory. Linear Hashing needs to keep track of
hash functions and next pointer. While Linear Hashing is not necessarily slower for lookups, static
hashing is the most appropriate.

c) [3 points] Consider the Extendible Hashing structure below. What is the maximum number of
keys can you insert before the size of the directory must double? (no explanation needed)

We can insert a total 8 entries.

• 2 in bucket #1
• 1 in bucket #3
• 2 in bucket #2
• Inserting another entry in #2 will

cause a split, but the directory
will not double. We can then add
2 more entries.

 SID:____________________

CS 186 Midterm I February 24, 2011 Page 8 of 10

Question 3 – Hash Indexes (continued

d) [6 points] Consider Linear hashing with a hash function and the following
initial state. A split is triggered when a bucket reaches a load factor of 75% (i.e., the 3rd data entry
is added to a bucket). The current state of the hashing structure is depicted below.

Using the template below, show the state of the structure after inserting the following five data
entries: 31 (11111), 39 (100111), 25 (11001) , 102 (1100110) , 80 (1010000). Be sure to fill in
the values of Level and N, show the Next pointer, and cross out any buckets that are not yet
allocated. (do your work elsewhere and fill in your final answer below).

12 = 0001100
24 = 0011000
29 = 0011101
62 = 0111110
72 = 1001000
75 = 1001011
89 = 1011001
98 = 1100010

 SID:____________________

CS 186 Midterm I February 24, 2011 Page 9 of 10

Question 4 – Concurrency Control [7 parts, 29 points total]
For parts (a-d), consider the following schedule of three transactions. Commit abbreviated “com”

Operation 1 2 3 4 5 6 7 8 9 10 11 12
T1: R(C) R(A) W(A) com

T2: W(C) R(A) W(B) com

T3: R(A) R(A) W(B) com

a) [6 points] Draw the dependency graph for this schedule. Be sure to list the object(s) (A, B, or
C) that is (are) the cause of each dependency on each edge.

b) [5 points] Is this schedule conflict-serializable? If so, list a serial ordering of the transactions
that would produce an equivalent schedule. If not, state why not.

Yes. T3 -> T1 -> T2.

c) [2 points] This schedule of read and write operations could be generated by a system following
the regular 2PL (two phase locking) protocol. (Circle one)
 TRUE FALSE
(We originally made a mistake on grading this question. We gave the points for “True”, but the
correct answer to this is “False”.)
d) [2 points] This schedule of read and write operations could be generated by a system following
the Strict 2PL protocol. (Circle one)
 TRUE FALSE

!" !#

!$

%&'(

%)

 SID:____________________

CS 186 Midterm I February 24, 2011 Page 10 of 10

e) [4 points] In general, is Strict 2PL is more likely to encounter deadlocks than regular 2PL?
State Why or Why Not.

Yes. Locks are held longer in Strict 2PL, thus increasing the likelihood of deadlocks.

f) [4 points] Is Optimistic Concurrency Control (as described in the book and in lecture) more
likely to encounter deadlocks than regular 2PL? State Why or Why Not.

No. Optimistic Concurrency Control doesn’t employ locks.

g) [6 points] Assuming very few people actually attended lecture, in which lock mode(s) (IS, IX,
S, X, SIX) should the DBMS lock each granularity to run the following query with maximum
concurrency?

UPDATE CS186Students SET (grade = ‘A’) WHERE attendedLecture=true

Granularity Mode (S, IS, IX, X,
SIX, or none)

Database IX

Relation SIX

Record X

