
 Page 1/22

University of California, Berkeley
College of Engineering

Computer Science Division  EECS
Fall 2010 John Kubiatowicz

Midterm I
SOLUTIONS

October 18th, 2010
CS162: Operating Systems and Systems Programming

Your Name:

SID Number:

Circle the letters
of CS162
Login

First: a b c d e f g h I j k l m n o p q r s t u v w x y z
Second: a b c d e f g h I j k l m n o p q r s t u v w x y z

Discussion
Section:

General Information:
This is a closed book exam. You are allowed 2 pages of notes (both sides). You may use a
calculator. You have 3 hours to complete as much of the exam as possible. Make sure to read all of
the questions first, as some of the questions are substantially more time consuming.

Write all of your answers directly on this paper. Make your answers as concise as possible. On
programming questions, we will be looking for performance as well as correctness, so think through
your answers carefully. If there is something about the questions that you believe is open to
interpretation, please ask us about it!

Problem Possible Score

1 16

2 22

3 20

4 24

5 18

Total 100

CS 162 Fall 2010 Midterm I October 18th, 2010

 Page 2/22

[This page left for ]

3.14159265358979323846264338327950288419716939937510582097494459230781640628620899

CS 162 Fall 2010 Midterm I October 18th, 2010

 Page 3/22

Problem 1: True/False [16 pts]
Please EXPLAIN your answer in TWO SENTENCES OR LESS (Answers longer than this may not
get credit!). Also, answers without an explanation GET NO CREDIT.

Problem 1a[2pts]: The size of an inverted page table grows with the size of the virtual address
space that it is supporting.

 True / False
 Explain: Since an inverted page table holds a hash on entries, it only needs to grow
 with the size of the physical address space. Entries not found in the
 inverted page table can be assumed to be invalid.
Problem 1b[2pts]: The term “Core” in “Dump Core” refers to the interior of a machine, since
memories used to be in the middle of room-sized computers.

 True / False
 Explain: The term “Core” refers to “core memory”, a type of memory that uses
 magnetic rings (cores) to store bits of information.
Problem 1c[2pts]: Threads within the same process can share data with one another by passing
pointers to objects on their stacks.

 True / False
 Explain: Since the threads in the same process share an address space, they can
 all access the same memory (including each other’s stacks).
Problem 1d[2pts]: Resource cycles always lead to deadlock.

 True / False
 Explain: No. If there are multiple equivalent resources, then a cycle could exist that
 wasn’t a deadlock: The reason is that some thread that wasn’t a part of the
 cycle could release a resource needed by a thread in the cycle, thereby
 breaking the cycle.
Problem 1e[2pts]: Anything that can be done with a monitor can also be done with semaphores.

 True / False
 Explain: Since one can construct monitors using semaphores, one could

implement any monitor-based algorithm with semaphores by simply
 replacing the monitor implementation (i.e. locks and condition
 variables) with one using semaphores.

CS 162 Fall 2010 Midterm I October 18th, 2010

 Page 4/22

Problem 1f[2pts]: “Hyperthreading” is a term used to describe systems with thousands of threads.

True / False
 Explain: Hyperthreading refers to a hardware-multithreading technique that
 interleaves a small number of threads on a cycle-by-cycle basis to
 maximize the utilization of the processor pipeline.

Problem 1g[2pts]: A Lottery Scheduler can be used to implement any other scheduling algorithm
by adjusting the number of tickets that each process holds.

True / False
 Explain: A lottery scheduler cannot be used to implement strict priority scheduling.

Problem 1h[2pts]: A MicroKernel can improve the resilience of a system against bugs in the OS.

True / False
 Explain: By isolating components of the system (such as file system, network stack,
 etc.) in their own address spaces, we gain resilience against bugs because
 buggy components are prevented from interfering with other components
 by the address-space isolation.

CS 162 Fall 2010 Midterm I October 18th, 2010

 Page 5/22

Problem 2: Short Answer [22pts]
Problem 2a[2pts]: What is priority donation and why is it important?

Priority donation is the process of promoting the priority of lock holders to be equal to that of
the corresponding lock-waiters in order to prevent priority inversion (a situation in which a
high-priority process ends up waiting on a low-priority process). Priority donation helps to
avoid variety of bad situations that can arise from priority inversion such as livelocks or other
violations of resource usage that result from not adhering to the priority scheme.

Problem 2b[3pts]: Name three ways in which the processor can transition from user mode to
kernel mode. Can the user execute arbitrary code after transitioning?

Some examples include (you only need three):

(1) User executing a yield() system call

(2) User executing an arbitrary system call (such as for I/O)

(3) External interrupt (such as a timer interrupt)

(4) System fault (such as a divide-by-zero or memory error).

(5) Page Fault

No, the user is not able to execute arbitrary code, because all of the entrypoints to the kernel
are carefully enforced by the hardware. To say this another way, the hardware makes sure that
all transitions to kernel mode are accompanied by entry into a well-defined set of entry points.

Problem 2c[2pts]: What happens when an interrupt occurs? What does the interrupt controller do?

Assuming that the interrupt is currently enabled, the hardware saves the PC, disables
interrupts, then jumps to an interrupt vector based on the type of interrupt. Typically, the
interrupt handler adjusts which interrupts are enabled and saves all registers (including the
stack pointer) before proceeding to service the interrupt. The interrupt controller provides an
interface that allows the kernel to control which interrupts are enabled.

Problem 2d[2pts]: Explain how to fool the multi-level feedback scheduler’s heuristics into giving
a long-running task more CPU cycles.

The multi-level feedback scheduler uses the time between bursts (i.e. between I/O operations) to
distinguish between interactive and background tasks. Long-running tasks are typically run at
lower priority. By inserting a bunch of I/O (say printfs) into the long-running task, one can fool
the multi-level feedback scheduler into thinking that the long-running tasks is actually
interactive and should be run at higher priority.

CS 162 Fall 2010 Midterm I October 18th, 2010

 Page 6/22

Problem 2e[3pts]: What is the difference between Mesa and Hoare scheduling for monitors?
Include passing of locks between signaler and signalee, scheduling of CPU resources, and impact
on the programmer.

For Mesa scheduling, the signaler keeps the lock and CPU, while the signaled thread is simply
put on the ready queue and will run at a later time. Further, a programmer with Mesa
scheduled monitors must recheck the condition after being awoken from a Wait() operation [
i.e. they need a while loop around the execution of Wait(). For Hoare scheduling, the signaler
gives the lock and CPU to the signaled thread which begins running until it releases the lock, at
which point the signaler regains the lock and CPU. A programmer with Hoare scheduled
monitors does not need to recheck the condition after being awoken, since they know that the
code after the Wait() is executed immediately after the Signal() [i.e. they do not need a while
loop around the execution of Wait()].

Problem 2f[2pts]: What needs to be saved and restored on a context switch between two threads in
the same process? What if the two threads are in different processes? Be explicit.

Need to save the processor registers, stack pointer, program counter into the TCB of the thread
that is no longer running. Need to reload the same things from the TCB of the new thread.
When the threads are from different processes, need to not only save and restore what was
given above, but you also need to load the pointer for the top-level page-table of the new
address space. You don’t need to save the old pointer, since this will not change and is
already stored in the PCB.

Problem 2g[2pts]: List two reasons why overuse of threads is bad (i.e. using too many threads for
different tasks). Be explicit in your answers.

There are many reasons why overusing threads may be bad. For instance: (1) the overhead of
switching will become significant, (2) you would end up using a lot of memory for stacks, (3) the
threads may spend all of their time synchronizing on shared data structures (i.e. sleeping in
locks), (4) You may be more likely to introduce concurrency bugs with increased concurrency.

Problem 2h[2pts]: As specified, the SRTF algorithm requires knowledge of the future. Name two
ways to approximate the information required to implement this algorithm.

(1) One can use the past to predict the future by building a model of burst time (e.g. a Kalmann
filter or an exponential-averaging filter).

(2) One could build a scheduler structure (such as the multi-level scheduler) that attempts to
sort threads into a small number of categories based on their past behavior and using these
categories to subsequently assign processor time (i.e. schedule) these threads.

CS 162 Fall 2010 Midterm I October 18th, 2010

 Page 7/22

Problem 2i[4pts]:
Here is a table of processes and their associated arrival and running times.

Process ID Arrival Time
CPU Running

Time
Process 1 0 2
Process 2 1 6
Process 3 4 1
Process 4 7 4
Process 5 8 3

Show the scheduling order for these processes under 3 policies: First Come First Serve (FCFS),
Shortest-Remaining-Time-First (SRTF), Round-Robin (RR) with timeslice quantum = 1. Assume
that context switch overhead is 0 and that new processes are added to the head of the queue except
for FCFS, where they are added to the tail.

Time Slot FCFS SRTF RR

0 1 1 1

1 1 1 2

2 2 2 1

3 2 2 2

4 2 3 3

5 2 2 2

6 2 2 2

7 2 2 4

8 3 2 5

9 4 5 2

10 4 5 4

11 4 5 5

12 4 4 2

13 5 4 4

14 5 4 5

15 5 4 4

CS 162 Fall 2010 Midterm I October 18th, 2010

 Page 8/22

[This page intentionally left blank]

CS 162 Fall 2010 Midterm I October 18th, 2010

 Page 9/22

Problem 3: Readers-Writers Access to Database [20 pts]
Reader() {
 //First check self into system
 lock.acquire();
 while ((AW + WW) > 0) {
 WR++;
 okToRead.wait(&lock);

 WR--;
 }
 AR++;
 lock.release();

 // Perform actual read-only access
 AccessDatabase(ReadOnly);

 // Now, check out of system
 lock.acquire();
 AR--;
 if (AR == 0 && WW > 0)
 okToWrite.signal();
 lock.release();
}

Writer() {
 // First check self into system
 lock.acquire();
 while ((AW + AR) > 0) {
 WW++;
 okToWrite.wait(&lock);
 WW--;
 }
 AW++;
 lock.release();

 // Perform actual read/write access
 AccessDatabase(ReadWrite);

 // Now, check out of system
 lock.acquire();
 AW--;
 if (WW > 0){
 okToWrite.signal();
 } else if (WR > 0) {
 okToRead.broadcast();
 }
 lock.release();
}

Problem 3a[2pts]: Above, we show the Readers-Writers example given in class. It used two
condition variables, one for waiting readers and one for waiting writers. Suppose that all of the
following requests arrive in very short order (while R1 and R2 are still executing):

 Incoming stream: R1 R2 W1 R3 W2 W3 R4 R5 R6 W4 R7 W5 W6 R8 R9 W7 R10

In what order would the above code process the above requests? If you have a group of requests
that are equivalent (unordered), indicate this clearly by surrounding them with braces ‘{}’. You can
assume that the wait queues for condition variables are FIFO in nature (i.e. signal() wakes up the
oldest thread on the queue). Explain how you got your answer.

SOLN: Processed as follows: {R1 R2} W1W2 W3 W4 W5 W6 W7 { R3 R4 R5 R6 R7 R8 R9 R10}

Since this algorithm gives precedence to writes over reads, although the first two reads get to
execute together and right away, the remaining reads are deferred until each write is processed
(one at a time). After all writes are finished, then the reads execute as a group.

Problem 3b[2pts]: Let us define the logical arrival order by the order in which threads first
acquire the monitor lock. Suppose that we wanted the results of reads and writes to the database to
be the same as if they were processed one at a time – in their logical arrival order; for example,
W1 W2 R1 R2 R3 W3 W4 R4 R5 R6 would be processed as W1 W2 {R1 R2 R3} W3 W4 {R4 R5 R6}
regardless of the speed with which these requests arrive. Explain why the above algorithm does not
satisfy this constraint.

Once it starts buffering items (i.e. putting requests to sleep on condition variables), the above
algorithm does not keep track of the arrival order. Or, to say it another way, the above
algorithm loses all ordering between buffered reads and buffered writes. Thus, it cannot
guarantee that reads execute after earlier writes and before later writes (as defined by logical
arrival order) unless it never buffers items (in which case it is not really doing anything at all).

CS 162 Fall 2010 Midterm I October 18th, 2010

 Page 10/22

Assume that our system uses Mesa scheduling and that condition variables have FIFO wait
queues. Below is a sketch of a solution that uses only two condition variables and that does
return results as if requests were processed in logical arrival order. Rather than separate
methods for Reader() and Writer(), we have a single method which takes a “NewType” variable
(0 for read, 1 for write):

 1. Lock MonitorLock; // Methods: acquire(),release()
 2. Condition waitQueue, onDeckQueue;// Methods: wait(),signal(),broadcast()
 3. int Queued = 0, onDeck = 0; // Counts of sleeping threads
 4. /* Missing code */

 5. Accessor (int NewType) { // type = 0 for read, 1 for write
 6. /* Monitor to control entry so that one writer or multiple readers */
 7. MonitorLock.acquire();
 8. /* Missing wait condition */
 9. { Queued++;
 10. waitQueue.wait();
 11. Queued—;
 12. }
 13. /* Missing wait condition */
 14. { onDeck++;
 15. onDeckQueue.wait();
 16. onDeck--;
 17. }
 18. /* Missing code */
 19. MonitorLock.release();

 20. // Perform actual data access
 21. AccessDatabase(NewType);

 22. /* Missing code */
 23. }

The waitQueue condition variable keeps unexamined requests in FIFO order. The
onDeckQueue keeps a single request that is currently incompatible with requests that are
executing. We want to allow as many parallel requests to the database as possible, subject to the
constraint of obeying logical arrival order. Here, logical arrival order is defined by the order in
which requests acquire the lock at line #7.

Problem 3c[2pts]: What additional variable(s) (and initialization) do you need at Line #4? Hint:
think about what you need to describe the current set of threads accessing the database in parallel.
Give explicit code to insert at Line #4 (can be more than one line of actual code).

We need to know which type of request is currently occurring and how many of these requests
are occurring in order to adhere to the Readers-Writers conditions (multiple reads or one write
at a time). Although we can accomplish this requirement in multiple ways, the following works:

 int CurType = 0;
 int NumAccessing = 0;

Problem 3d[2pts]: Explain why you might not want to use a “while()” statement in Line #8 –
despite the fact that the system has Mesa scheduling:

Because a while loop will potentially reorder requests on the waitQueue condition variable –
and we want to keep requests in their original logical arrival order. Thus whatever we do, we
do not want to execute waitQueue.wait()more than once per thread.

CS 162 Fall 2010 Midterm I October 18th, 2010

 Page 11/22

Problem 3e[2pts]: What is the missing code in Line #8? Hint: it is a single “if” statement.

If anyone in the system is waiting, then we want to wait so that we don’t get ahead of others (i.e.
so that we preserve the logical arrival order):

if (Queued + onDeck > 0)

Problem 3f[2pts]: What is the missing code in Line #13? This should be a single line of code.

If the current request is incompatible with the set of executing requests, then we have to wait:

while ((NumAccessing > 0) && (NewType == 1 || CurType == 1))

You could also use an “if” here, but then you would need to conditionalize the
“onDeckQueue.signal()” statement in (3h).

Problem 3g[2pts]: What is the missing code in Line #18? You should not have more than three (3)
actual lines of code.

NumAccessing++; // Have another thread accessing the database
CurType = NewType; // In case we are first of new group
waitQueue.signal(); // Wake up next thread (if they exist)

Problem 3h[3pts]: What is the missing code in Line #22? You should not have more than five (5)
actual lines of code.

MonitorLock.acquire();
NumAccessing--; // One less accessing
onDeckQueue.signal(); // Wake up someone stalled on conflict
MonitorLock.release();

If you use an “if” in (3h), then need this instead of the above signaling

if(NumAccessing ==0)
 onDeckQueue.signal(); // Wake up someone stalled on conflict

Problem 3i[3pts]: Suppose that condition variables did not have FIFO ordered wait queues. What
changes would you have to make to your code? Be explicit (you should not need more than 6 new
or changed lines). Hint: consider assigning a sequentially increasing ID to each thread.

New variables to track sequential IDs added to Line #4:

 int HeadID = 0, TailID = 0; //(NEW)

New code for Line #8 (one new line, one changed line):

int MyCurrentID = TailID++; //(NEW)Next logical ID to new request
while (MyCurrentID != HeadID) //(CHANGED)

Finally, code for Line #18 is slightly different (only added 1 line, changed 1 line):

NumAccessing++; //(UNCHANGED LINE)
CurType = NewType; //(UNCHANGED LINE)
HeadID++; //(NEW) Next in-order thread can wake
waitQueue.broadcast(); //(CHANGED) Wake up next thread in order

CS 162 Fall 2010 Midterm I October 18th, 2010

 Page 12/22

[This page intentionally left blank]

CS 162 Fall 2010 Midterm I October 18th, 2010

 Page 13/22

Problem 4: Deadlock [24pts]
Problem 4a[2pts]: Suppose that we utilize the Banker’s algorithm to determine whether or not to
grant resource requests to threads. The job of the Banker’s algorithm is to keep the system in a
“SAFE” state. It denies resource requests by putting the requesting thread to sleep if granting the
request would cause the system to enter an “UNSAFE” state, waking it only when the request could
be granted safely. What is a SAFE state?

In a safe state, there is some ordering of the threads in the system such that threads can
complete, one after another without deadlocking and without requiring threads to give up
resources that they already have.

Problem 4b[4pts]:
The figure at the right illustrates a 2D mesh of network routers.
Each router is connected to each of its neighbors by two
network links (small arrows), one in each direction. Messages
are routed from a source router to a destination router and can
stretch through the network (i.e. consume links along the route
from source to destination). Messages can cross inside routers.

Assume that no network link can service more than one
message at a time, and that each message must consume a
continuous set of channels (like a snake). Messages always
make progress to the destination and never wrap back on
themselves. The figure shows two messages (thick arrows).

Assume that each router or link has a very small amount of buffer space and that each message
can be arbitrarily long. Show a simple situation (with a drawing) in which messages are deadlocked
and can make no further progress. Explain how each of the four conditions of deadlock are
satisfied by your example. Hint: Links are the limited resources in this example.

Answer: The simplest deadlock example is a set of four messages in a
loop (as shown in the figure at the left). Each message is blocked
attempting to make a counter-clockwise turn by a message utilizing the
target channel. Four conditions:

1. Mutual Exclusion: Each channel held by one message at a time
2. Hold and Wait: messages hold channels while waiting to acquire

other channels
3. No preemption: Channels can not be preempted from messages

after they are acquired by them
4. Circular wait: We have a cycle of waiting here – four messages

R R R R

R R R R

R R R R

R R R R

R R R R

R R R R

R R R R

R R R R

R R R RR R R R R RR R

R R R RR R R RR R R R R RR R

R R R RR R R RR R R R R RR R

R R R RR R R RR R R R R RR R

R R

R R

R R

R R

R RR R

R RR R

CS 162 Fall 2010 Midterm I October 18th, 2010

 Page 14/22

Problem 4c[3pts]:
Define a routing policy that avoids deadlocks in the network of (4b). Prove that deadlocks cannot
happen when using this routing policy. Hint: assume that a deadlock occurs and show why that
leads to a contradiction in the presence of your new routing policy.

Several answers are possible here. The one given in class was to force messages to route in the
X direction first, then Y. To prove that deadlocks cannot occur, assume that one did occur.
Then, such a deadlock would involve a cycle in messages. However, such a cycle would involve
at least one message that routed from the Y direction to the X direction (in fact, at least 2 of
them). Since we have disallowed such a route, this cycle cannot exist. Thus, no deadlocks can
exist.

Problem 4d[3pts]: Suppose that we wanted a less restrictive routing policy than your answer to
(4c). Explain why the Banker’s algorithm is not well adapted to this routing problem. What could
you do that was similar in spirit to the Banker’s algorithm to prevent deadlock in networks such as
(4b), while allowing arbitrary routing of messages? Why is it unlikely that such an algorithm
would be used in a real network?

The problem here is that the resource needs of a message depends on the current location of its
head, while the Banker’s algorithm requires declaration of resource needs prior to routing. The
Banker’s algorithm is so conservative that it would allow only a small number of messages to
be present in the network at the same time.

What one could do is to have each message request its next link from a deadlock-avoider that
checks inflight messages to see if they could still be drained from the network if the link request
were granted. Although this mechanism would be in the spirit of the Banker’s algorithm, it is
very expensive (requires essentially routing all messages to their destinations to decide whether
the system would deadlock).

Problem 4e[2pts]: Is it possible for a system with a single monitor (i.e one lock with multiple
condition variables) to deadlock? Explain.

Yes. The lock provides a guard on the condition variables, which could be involved in a circular
wait condition. The simplest way to see this situation is to construct two semaphores from one
monitor with two condition variables. For instance:

 X.p() lock.acquire(); X.v() lock.acquire();
 while (Xcount = 0) Xcount++;
 Xcondition.wait(); Xcondition.signal()
 Xcount—; lock.release();
 lock.release();

 Same for semaphore Y. Then, set up a circular wait condition:

 Thread 1 Thread 2
 X.p() Y.p()
 Y.p() X.p()

CS 162 Fall 2010 Midterm I October 18th, 2010

 Page 15/22

Problem 4f[4pts]:
Suppose that we have the following resources: A, B, C and threads T1, T2, T3, T4. The total
number of each resource is:

Further, assume that the processes have the following maximum requirements and current
allocations:

Thread
ID

Current Allocation Maximum
A B C A B C

T1 2 1 3 4 9 4
T2 1 2 3 5 3 3
T3 5 4 3 6 4 3
T4 2 1 2 4 8 2

Is the system in a safe state (as defined by the Banker’s algorithm)? If “yes”, show a non-blocking
sequence of thread executions. Otherwise, provide a proof that the system is unsafe. Show all steps,
intermediate matrices, etc.

Answer: Yes, this system is in a safe state.

To prove this, we first compute the currently free allocations:

Further, we compute the number needed by each thread (Maximum – Current Allocation):

Thread

ID
Needed Allocation
A B C

T1 2 8 1
T2 4 1 0
T3 1 0 0
T4 2 7 0

Thus, we can see that a possible sequence is: T3, T2, T4, T1:

Thread
ID

Needed Allocation Current Allocation Available Before
A B C A B C A B C

T3 1 0 0 5 4 3 2 1 1
T2 4 1 0 1 2 3 7 5 4
T4 2 7 0 2 1 2 8 7 7
T1 2 8 1 2 1 3 10 8 9

Total
A B C
12 9 12

Available
A B C
2 1 1

CS 162 Fall 2010 Midterm I October 18th, 2010

 Page 16/22

Problem 4g[3pts]:
Assume that we start with a system in the state of (4f). Suppose that T1 asks for 2 more copies of
resource A. Can the system grant this if it wants to avoid deadlock (i.e. will the result be a SAFE
state)? Explain.

No. This cannot be granted. Assume that T1 gets 2 more of A.
Then, our available allocation is:

Then, looking at our needed
allocations, we see:

At this point, the available allocation is insufficient to start any of the threads, much less find a
safe sequence that finishes all of them.

Problem 4h[3pts]:
Assume that we start with a system in the state of (4f). What is the maximum number of additional
copies of resources (A, B, and C) that T1 can be granted in a single request without risking
deadlock? Explain.

We cannot ask for more than (A,B,C)=(2,1,1) since this is all that is available. However, the
previous problem showed that A must be < 2. Further, note that the resources given to T1 are
tied up until the very end of the execution (look at sequence in 4f).

Thus, looking at our safe sequence from 4f, we can see that it can still work if it is missing one A
and one C. Just work through it with the first “Available Before” allocation of 1,1,0 instead of
2,1,1. However, it will not work if it is missing one more B (we would be unable to execute T4 in
the sequence), i.e. setting “Available Before” to 1,0,0 prevents the execution of T4.

Thus the maximum number of additional resources that can be requested by T1 is
(A,B,C)=(1,0,1)

Available
A B C
0 1 1

Thread
ID

Needed Allocation
A B C

T1 0 8 1
T2 4 1 0
T3 1 0 0
T4 2 7 0

CS 162 Fall 2010 Midterm I October 18th, 2010

 Page 17/22

Problem 5: Virtual Memory [18pts]
Consider a two-level memory management scheme on 24-bit virtual addresses using the following
format for virtual addresses:

Virtual Page #
(8 bits)

Virtual Page #
(8 bits)

Offset
(8 bits)

Virtual addresses are translated into 16-bit physical addresses of the following form:

Physical Page #
(8 bits)

Offset
(8 bits)

Page table entries are 16 bits in the following format, stored in big-endian form in memory (i.e. the
MSB is first byte in memory).

Page Table Entry (PTE)

Physical Page #
(8 bits)

K
ernel O

nly

U
ncacheable

0

0

D
irty

U
se

W
rite

V
alid

Note that a virtual-physical translation can fail at any point if an incompatible PTE is encountered.
Two types of errors can occur during translation: “invalid page” (page is not mapped at all) or
“access violation” (page exists, but access was illegal).

Problem 5a[2pts]: How big is a page? Explain.

Pages are 256 bytes in size (2Offset) = (28).

Problem 5b[2pts]: What is the largest size for a page table with this address space? We are asking
for the total size of both levels of the page table. Explain.

The largest page table would occur when there is a mapping for all pages in the address space.
All entries would be filled at both levels of the page table. In this double-level page table, there
will be 1 page-table chunk at the top level and 28 page-table chunks at the second level for a
total of 1+28 chunks. Each chunk has 28×SizeOf(PTE) = 512 bytes. Thus, the total size of the
full page table is: (1+28) × (512) = 131584.

Problem 5c[3pts]: What does “TLB” stand for and what is its function? How big would a TLB
entry be for this system?

“TLB” stands for Translation Lookahead Buffer. It serves as a cache for translations from the
page table. Each TLB entry would contain a virtual page # (16 bits), a PTE (16 bits), and a
valid bit (1 bit) for a total of 33 bits. Since there are two zero bits in the PTE, one could argue
that the TLB entry only needs 31 bits.

CS 162 Fall 2010 Midterm I October 18th, 2010

 Page 18/22

Problem 5d[3pts]: Sketch the format of the page-table for this multi-level virtual memory
management scheme. Illustrate the process of resolving an address as well as possible.

We were looking for something like this:

Physical Page
(8 Bits)

Access
Check

Access
Check

Virtual Address

Physical Address

Offset
(8 Bits)

Virtual Index 1
(8 bits)

Virtual Index 2
(8 bits)

Offset
(8 Bits)

Table Base Pointer
(8Bits)

Problem 5e[2pts]: What is “Copy on Write”? How would you perform Copy on Write with the
Virtual Memory system discussed in this problem?

Copy on Write is a mechanism for making cheap copies of an address space by creating a
duplicate page table that points at the same physical pages as an existing page table. All PTEs
are marked as read-only, allowing any write to be caught; at the point of a write, the target
page can be copied so that each page table points at a unique copy. As just mentioned, Copy
On Write is accomplished in this Virtual Memory system by setting the PTE to Read-Only so
that the target page can be copied at the first write.

Problem 5f[6pts]: The contents of physical memory are given on the next page. Assume that the
page-table base pointer = 0x2000, and that the CPU is in user-mode. Please return the results from
the following load/store instructions. Addresses are virtual. The return value for load is an 8-bit
data value or an error, while the return value for a store is either “ok” or an error. For errors, please
specify which type of error (either “invalid page” or “access violation”).

Instruction Return Value Instruction Return Value

Load [0x700FE] 0xEE Store [0x10310] OK
Store [0x700FE] Access violation Load [0x20102] 0x01
Load [0xC2345] Invalid Page Store [0x20731] Access Violation
Load [0x00115] 0x57 Load [0x81015] Access Violation

CS 162 Fall 2010 Midterm I October 18th, 2010

 Page 19/22

Virtual Address Format
Virtual Page #

(8 bits)
Virtual Page #

(8 bits)
Offset
(8 bits)

Page Table Entry (PTE)

Physical Page #
(8 bits)

K
ernel

N
ot

C
acheable

0 0

D
irty

U
se

W
rite

V
alid

Physical Memory
Address +0 +1 +2 +3 +4 +5 +6 +7 +8 +9 +A +B +C +D +E +F
0x0000 E0 F0 01 11 21 31 41 51 61 71 81 91 A1 B1 C1 D1
0x0010 1E 1F 20 21 22 23 24 25 26 27 28 29 2A 2B 2C 2D

….
0x1010 40 41 42 43 44 45 46 47 48 49 4A 4B 4C 4D 4E 4F
0x1020 40 07 41 06 30 06 31 07 00 07 00 00 00 00 00 00

….
0x2000 21 01 22 03 25 01 22 01 2F 03 28 03 30 03 22 03
0x2010 40 81 41 81 42 81 43 83 00 00 00 00 00 00 00 00

….
0x2100 30 05 31 01 32 03 33 07 34 00 35 00 36 00 37 00
0x2110 38 00 39 00 3A 00 3B 00 3C 00 3D 00 3E 00 3F 00

….
0x2200 30 01 31 83 00 01 00 0F 04 00 05 00 06 00 07 00
0x2210 08 00 09 00 0A 00 0B 00 0C 00 0D 00 0E 00 0F 00

….
0x2500 10 01 00 03 12 85 13 05 14 05 15 05 16 05 17 05
0x2510 18 85 19 85 1A 85 1B 85 1C 85 1D 85 1E 85 00 00

….
0x2800 50 01 51 03 00 00 00 00 00 00 00 00 00 00 00 00

….
0x2F00 60 03 28 03 62 00 63 00 64 03 65 00 66 00 67 00
0x2F10 68 00 69 00 00 00 00 00 00 00 00 00 00 00 00 00
0x2F20 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

….
0x30F0 00 11 22 33 44 55 66 77 88 99 AA BB CC DD EE FF
0x3100 01 12 23 34 45 56 67 78 89 9A AB BC CD DE EF 00
0x3110 02 13 24 35 46 57 68 79 8A 9B AC BD CE DF F0 01

….
0x4000 30 00 31 06 32 07 33 07 34 06 35 00 43 38 32 79
0x4010 50 28 84 19 71 69 39 93 75 10 58 20 97 49 44 59
0x4020 23 87 20 07 00 06 62 08 99 86 28 03 48 25 34 21

CS 162 Fall 2010 Midterm I October 18th, 2010

 Page 20/22

 [This page intentionally left blank]

CS 162 Fall 2010 Midterm I October 18th, 2010

 Page 21/22

[Scratch Page: Do not put answers here!]

CS 162 Fall 2010 Midterm I October 18th, 2010

 Page 22/22

[Scratch Page: Do not put answers here!]

