Computer Architecture and Engineering

CS152 Quiz #4
April 13, 2010
Professor Krste Asanovic

Name: ANSWER KEY

This is a closed book, closed notes exam.
80 Minutes
8 Pages

Notes:

Not all questions are of equal difficulty, so look over the entire exam
and budget your time carefully.

Please carefully state any assumptions you make.

Please write your name on every page in the quiz.

You must not discuss a quiz's contents with students who have not
yet taken the quiz. If you have inadvertently been exposed to the
quiz prior to taking it, you must tell the instructor or TA.

You will receive no credit for selecting multiple-choice answers
without giving explanations if the instructions ask you to explain
your choice.

Writing name on each sheet 1 Point
Question 1 24 Points
Question 2 19 Points
Question 3 18 Points
Question 4 18 Points

TOTAL 80 Points

NAME:

Problem Q4.1: Static Scheduling 24 points

In this problem, we consider the execution of a code segment on a single-issue, in-order
processor and a VLIW processor. The code we consider is the SAXPY kernel, which
scales a vector X by a constant A, adding this quantity to a vector Y.

I loop: 1d £0, 0(rl) # for(i = 0; i < N; i++)
I fmul £2, £0, f1l # Y[i] = Y[i] + A*X[i];
I 1d £3, 0(r2)
I, fadd f£4, £2, f£3
Is st £f4, 0(r2)
I¢ addi rl1, rl1, 4
I, addi r2, r2, 4
Ig bne rl1, r3, loop
Problem Q4.1.A 4 points

Assume that we execute this code segment on a single-issue, in-order processor with
perfect branch target prediction and full bypassing. ALU operations have a one-cycle
latency, loads have a three-cycle latency, and floating-point operations have a four-cycle
latency (even when bypassed to store instructions). How many cycles will the processor
stall per loop iteration?

There’s a 2-cycle stall due to the RAW hazard between 11 and 12; a 2-cycle stall between
[3 and I4 (which overlaps a 2-cycle stall between 12 and 14; don’t double-count!); and a
3-cycle stall between 14 and I5.

7 Stall Cycles per Iteration

Problem Q4.1.B 6 points

Reschedule the code to minimize the number of stall cycles, but do not software pipeline
or unroll the loop. Now, how many cycles will the processor stall per loop iteration?

I, loop: 1d £f0, 0(rl)

I fmul £2, £0, f1
I 1d £3, 0(r2)

I, fadd f£f4, £2, £3
I¢ addi rl1, rl1, 4

I, addi r2, r2, 4

Is st f4, -4(r2)
Ig bne rl, r3, loop

One of many possible solution is to move the addis between the fadd and the st, but don’t
forget to change the store’s displacement to account for the new value of r2!
5 Stall Cycles per Iteration

NAME:

Problem Q4.1.C 8 points

Software pipeline the loop to eliminate all stalls for the processor in Q4.1.A. You may
omit the prolog and epilog code.

A simple algorithm is to reverse the data flow of the loop, turning RAW hazards into
WAR hazards. This loop has a 4-stage software pipeline, with the load of X being from
iteration 1, the load of Y and the fadd being from iteration i-1, the fmul being from
iteration i-2, and the store being from iteration i-3.

I: loop: st f4, -12(r2)
I fadd f4, £2, £3
I3 1d £3, -4(r2)

I, fmul £2, £0, f1
Is 1d £f0, 0(rl)

I¢ addi rl1, rl1, 4

I; addi r2, r2, 4

Ig bne rl1, r3, loop

Problem Q4.1.D 6 points

Now, software pipeline the loop for a VLIW machine with the same functional unit
latencies as the processor in Q4.1.A. Omit prolog and epilog code. The VLIW processor
has one ALU/branch unit, one memory unit, and one floating-point unit. What speedup
does the VLIW machine offer compared to the single-issue processor when both run
software-pipelined code?

You can just schedule the SW pipelined code from above onto this VLIW machine.
Unfortunately, the fadd->fmul latency still isn’t covered, so we need NOPs; to fix this,
we could have unrolled the loop once, but that wasn’t required.

Cycle ALU/Branch Unit Memory Unit Floating-Point Unit
1| addirl,rl 4 st f4,-12(r2) fadd f4,2,f3
2 | addir2,r2,4 1d £3,-4(12) fmul 2,10,f1
3 | bne r1,r3,loop 1d f0,-4(r1) *
4| * * *

5 % % *
6
7
8
9
10

8/5 Speedup

Problem Q4.2: Vectors 19 points

In this problem, we analyze the performance of the SAXPY kernel from Q4.1 on a vector
machine. The baseline vector processor we consider has the following features:

e 32 elements per vector register

* 32 vector registers

* 4 lanes

* One integer ALU per lane (one cycle latency)

* One FPU per lane (four cycle latency, pipelined)

* One memory unit per lane (four cycle latency, pipelined)

* No chaining

* A separate five-stage pipeline for scalar instructions. (The scalar unit does not
interlock if the vector unit is stalled.)

Problem Q4.2.A 9 points

Vectorize the original code from Q4.1, assuming the X and Y arrays do not overlap. You
may assume that N is a multiple of the vector length, and that the vector length register
has already been set accordingly.

The code is nearly identical to the original code of Q4.1, except we use vector registers
and increment the addresses by the vector length in bytes (32x4).

I, loop: LV v0o, O(R1l)
I, FMULVS V2, VO, F1
I Lv V3, 0(R2)
I, FADDV V4, V2, V3
Is Sv V4, 0(R2)
I ADDI R1, R1, 128
I, ADDI R2, R2, 128

Ig BNE R1, R3, loop

Problem Q4.2.B

NAME:

5 points

When executing your vectorized code on the baseline vector processor, how many
floating-point operations complete per cycle on average? (Note that without chaining, a
dependent vector instruction cannot begin execution until its source instruction has
completed writeback, so the functional unit latencies are effectively one cycle longer than

stated.)

Each loop iteration performs 64 flops. The easiest way to determine how many cycles it
takes is to schedule the code. There’s a 13-cycle latency between dependent instruction
issue (32/4 cycles to compute, 4 cycles for FU latency, 1 cycle for writeback). The scalar
instructions are overlapped easily with the SV, so they aren’t shown. Don’t forget that
two memory ops can’t be executing at once, so there’s a structural hazard between SV

and the next LV!
Instruction Iter 1 begins | Iter 2 begins
LV 0 48
FMULVS 13
LV 14
ADDV 27
SV 40

So, we have 64 flops / 48 cycles (4/3 flops/cycle).

Problem Q4.2.C

5 points

Suppose we add chaining support to the vector processor. Now, how many floating-point
operations complete per cycle on average?

Now, there’s only a 4 cycle FU latency between dependent instructions. Be careful not to
schedule two memory operations to be running concurrently!

Instruction [ter 1 begins [ter 2 begins
LV 0 24 (structural)
FMULVS |4 (RAW)

LV 8 (structural hazard)

ADDV 12 (RAW)

SV 16 (RAW)

So, we have 64 flops / 24 cycles (8/3 flops/cycle).

NAME:

Problem Q4.3: Multithreading 18 points

In this problem, we once again consider the SAXPY kernel from Q4.1, analyzing its
performance on a fine-grained multithreaded in-order processor.

Aside from threading, the processor we consider is identical to the pipeline from Q4.1.A.
It has perfect branch target prediction and full bypassing. ALU operations have a one-
cycle latency, loads have a three-cycle latency, and floating-point operations have a four-
cycle latency.

Problem Q4.3.A 6 points

The first implementation of multithreading we consider employs fixed round-robin
scheduling: every cycle, the processor fetches an instruction from a different thread.
What is the minimum number of SAXPY threads needed to eliminate all stalls? Justify
your answer.

We need to be able to cover the 3 stall cycles (with no intervening instructions), so we
need 3 additional threads, for a total of 4.

4 Threads

Problem Q4.3.B 6 points

Now, assume that the thread scheduler is aware of data hazards and can switch threads
when an interlock would have occurred due to a RAW hazard. What is the minimum
number of SAXPY threads needed to eliminate stalls? Justify your answer.

The most straightforward way to arrive at the correct answer of 3 threads is to construct a

stall-free schedule using 3 threads (which i1s a straightforward exercise), then
convincingly argue that it’s not possible to create such a schedule with only 2 threads.

3 Threads

NAME:

Problem Q4.3.C 6 points

Suppose main memory latency is 200 cycles, so we decide to add a write-allocate, write-
back data cache to the multithreaded processor from Q4.3.B. We want to execute the
SAXPY code using 8 threads. Each thread will operate on a contiguous chunk of the X
and Y vectors. Assuming that the X and Y arrays are too large to fit in cache, circle the
cache parameter(s) that will be most critical to performance. For each parameter that
you circle, what value do you recommend?

Number of Sets Sets
Associativity 16 Ways
Line Size 8 Words

We want an associativity of 16, because we have 16 streams occurring at once (8 threads
times 2 streams per thread, namely the X and Y arrays). Credit was given for 8 ways,
too; depending on the addresses of X and Y and the particular thread interleavings, 8 may
be sufficient.

Line size is tricky! To cover a memory latency of 200 cycles, each of the 8 threads must
average 25 instructions without a cache miss. We’ll round that up to 4 loop iterations. In
4 loop iterations, we access 8 unique words. Since the streams are unit stride, we’ll
average one cache miss per 4 loop iterations with 8-word cache lines.

ZI1NO A0 aNA

(‘10859901d J01U0D

oy} uey) el YO0[O IAYSIY B Jk UNI pue uoneyudwd[dwr duel-9[3uIs ‘suonerddo JIun J0109A due|

pauradid Ajdoop 2q ued jIun J0J09A Y} | B UO INIIXD 0} SI[OAD [BIDAJS I3 | [BIOAIS SOPOOUD UONINISUL JOJIIA dUO -o[3urs & 3urppy
:9sB2109p ‘1) ‘Yied [BONLIO AU} UIBIUOD | [[IM SUOHNONISUI JOJOIA :9SBAIOU] | :(9[qezLI03ddA ST weidoxd JI) osea1do(q

[ms m durjadid o3e1s-¢ 9yl 30932 ON

"PRO[IOM PIPUIIUI AY) UOTIUIW 0}

yred 1eonLd oy ‘spea1y} | pey ypa1o 104 -weirdoid e dzijorrered Jossaoo1d

uo 9q Aew ‘O[1J I)SIAI 1931e] B A[oweu | Suryoyims Aq SpIezey QwoOS U0 [9m JI asearoul y3is {(pod SO | oy Surpraampnmpy
‘91B)S PJO9JIYOIER [RUONIPPE :9SBAIOU] | SUJO[IAIUI PIOAR UBD dM :9SBAIdd(] | 9y} Ul asearoul Jy3I[s Inq) speopyiom
powweidordnnu 10J 3091J0 ON
‘(SdON) ysnoyj ‘191ea13

"$)[09Y2-$5010 ddoudpuddop yonw SI 9zIs 9pod [ej0], ‘suonerddo QIN30IYIIR

ou foqered ur SAYNOIXd AIBMPIRY | [=[dD OS ‘SYOO0[I)UI }or[sduryoew | ojdnnw ssaxdxo suoroNISul MITA [euonIpEn

MU [[B :IOpPIO ISIJ 0} 1099 ON | MITA [euonipen :0SBAI09(] | 9[SuIS Osneddq ‘9SBAIP PN © 0} SuneISIN

yred "dw1) JO JUNOWE JWES Iereosrodns ansst

[eonLo oY) uo 9q Aew syjed ssedAq pue
suod 21y 19)SI1321 [RUONIPPE :OSBAIU]

oy} ul suononnsul Auewl Se 99IM}
0} dn 9JNJOXd MOU UBD M :9SBIII(]

"03ueyd [BINJOANIYOILOIOIW
e APmd st s 3090 ON

-Jenp 03 10ssa001d
oY) SuruopIm

9[9K)) / SPU0IIS

uonodNNSu[/ SA[OL)

weI301d / SUONONISu|

“JIPAID QAII00I 0} SUTUOSEBIX INOA ure[dX7 '399JJ9 OU dABY [[IM UONEBIJIPOW Y} JOYIAYM IO ‘ASBIAIIIP ‘ISBAIIUI 0} SO1I039)80
oU} JO YOBO OSned [[IM suonedljipow JuIMO[[0} U} JOUIOUM NI\ -ouldseq e se aurdid HSY Iopio-ul 93e)s-0AlJ B IIPISUO))

[syurod gy]

(1OMSUY 110YS) IUBULIONId] 108SV0.1J JO Me'] uoa] () WI[QOI]

