Physics 137A: Midterm Solutions

February 23, 2011

1
(2)
Let us first solve for the energy eigenstates with £ > 0.
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The general solution is

Aetkr  Be—ikz T < —a
Y(z) =< Ce® + De ™% —qg<x<0
0 x>0

in which k = v2mE/h and k = \/2m(FE + 40h2/ma?)/h. Enforcing continuity of the wavefunction
at x =0 and x = —a yields

C+D=0
and
Aefika + Beika _ C«efma + Deimz —C (efina _ eina)
respectively. We may also insist on continuity of the derivative at 2 = —a (but not at = 0). This
gives

e~ Ra _ gika
efina + eina

Since the scattering state wavefunction is non-normalizable, we cannot go any further. Note that

ik (Ae—ika . Beika) = ik (Ae—ika + Beika)

all values of E > 0 are allowed.

Now let’s consider solutions with —iggj < E < 0. The general solution is
Aek= r < —a
P(x) = Ce® 4+ De ™ —q <2 <0
0 x>0

in which k = /—2mFE/h and x = \/2m(40h2/ma? + E)/h. Note that we have thrown out the solu-
tion which grows without bound in the x < —a region. Once again, continuity of the wavefunction

at x = 0 requires
C=-D



while continuity at © = —a gives
Ae—ka —C (e—ina . eimz)

so that the wavefunction takes the form

Aek® Tz < —a
P(x) = —Asie;(% sin(kz) —a<z<0
0 x>0

Normalization requires
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|Y|°de = |A|“e“™dx + |A|* —5—— sin®(kx)dx
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Finally we must insist on continuity of the derivative at x = —a, which will fix the allowed values
of the energy.

—ka

ke ke — —Lcos(—/w)
sin(ka)
= k = —krcot(ka)

(3)
Plugging in the definitions of k& and «, we find
1—
tan(v804/1 —y) = — -
Y
in which y = —ZLSZQE. Note that 0 < y < 1. Comparing both sides of the equation, we see that
there are exactly 3 bound states (plot both sides of the equation to check).

(4)

The reflectivity for a scattering state coming in from —oo is nothing but
Recall that we found

|B|>

raz from part (2), above.

e~ tka _ pika
e—ma + eina

= K (Ae_ika + Beika> tan(ka)
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Thus we have

_|B?  k*tan®(ka) + k*

A2 k%tan?(ka) + k2

which makes sense since there is an infinite barrier at x = 0. The probability to escape to x = 400

is zero, and the wavefunction has too much energy to be bound, so it must reflect back to x = —oo
with 100% probability.
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0 . ,
a—elkx (tanhz 4+ C) = ike'*® (tanhz + C) + e*®sech’z
x
92 . , . .
= ﬁe’k’” (tanhz 4+ C) = —k%* (tanhz + C) + ike’ sech?z — 2¢*¥sech?z tanh x
x
so that
Y 2 ika [1.2 2 _ . 2 2 2 2
“on 2sech“zy = e [k tanh x + C'k* — tksech®z 4 2sech“x tanh x — 2sech” tanh © — 2Csech m]
x
= ¢tk [k? tanh z + Ck? — iksech®z — 2Csech’z]
= k%
for C = —ik/2. Note that as x — —oo0, this wavefunction becomes ¢ — —(1 + ik/2)e*** a plane

wave incident from the left. As x — oo, ¥ — (1 — ik/2)e**®, a plane wave travelling to the right.
Thus the transmission coefficient is just

1 —dk/2PP 1+ k%4

T = - -
1+ ik/22 1+ k2/4

1

R+T=1= R=0.

(2)

Note that the above is a solution to the Schrodinger equation with energy E = k? for both k and
—k. Thus the general solution is

Y = Ae™™ (tanh 2 — ik/2) + Be ™* (tanh z + ik/2)

We can get the bound state solutions by taking k — ik (equivalent to sending F — —FE). This
gives the general bound-state solution

¢ = Ae " (tanh z + k/2) + Be® (tanh z — k/2)

with energy E = —k?. In the region x < 0 we may throw out the solution which grows unbounded
as x — —oo, and of course we may perform the analogous cut on the z > 0 solution. This gives

= Aek® (tanhz — k/2) <0
| Be™* (tanhx +k/2) >0



Continuity at = 0 requires

Continuity of the derivative requires
Al —k?*/2) = —A(1 — k*/2)
Thus the only bound-state solution is k2 =2 = E = —2.
(3)
Since this is the unique bound-state wavefunction, it must also be the ground state. This is further

confirmed by noting that the wavefunction has no nodes, and therefore must be the state of lowest
energy.



