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(2)

Let us first solve for the energy eigenstates with E > 0.

− ~2

2m
ψ′′ = Eψ, x < −a

− ~2

2m
ψ′′ =

(
E +

40~2

ma2

)
ψ, −a < x < 0

The general solution is

ψ(x) =


Aeikx +Be−ikx x < −a
Ceiκx +De−iκx −a < x < 0
0 x > 0

in which k =
√

2mE/~ and κ =
√

2m(E + 40~2/ma2)/~. Enforcing continuity of the wavefunction
at x = 0 and x = −a yields

C +D = 0

and
Ae−ika +Beika = Ce−iκa +Deiκa = C

(
e−iκa − eiκa

)
respectively. We may also insist on continuity of the derivative at x = −a (but not at x = 0). This
gives

ik
(
Ae−ika −Beika

)
= iκ

(
Ae−ika +Beika

) e−iκa − eiκa
e−iκa + eiκa

Since the scattering state wavefunction is non-normalizable, we cannot go any further. Note that
all values of E > 0 are allowed.
Now let’s consider solutions with −40~2

ma2
< E < 0. The general solution is

ψ(x) =


Aekx x < −a
Ceiκx +De−iκx −a < x < 0
0 x > 0

in which k =
√
−2mE/~ and κ =

√
2m(40~2/ma2 + E)/~. Note that we have thrown out the solu-

tion which grows without bound in the x < −a region. Once again, continuity of the wavefunction
at x = 0 requires

C = −D
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while continuity at x = −a gives

Ae−ka = C
(
e−iκa − eiκa

)
so that the wavefunction takes the form

ψ(x) =


Aekx x < −a
−A e−ka

sin(κa) sin(κx) −a < x < 0

0 x > 0

Normalization requires∫ ∞
−∞
|ψ|2dx =

∫ −a
−∞
|A|2e2kxdx+

∫ 0

−a
|A|2 e−2ka

sin2(κa)
sin2(κx)dx

= e−2ka
(

1

2k
− cot(κa)

2κ
+

a

2 sin2(κa)

)
=⇒ A =

√
2kκeka√

κ− k cot(κa) + akκ csc2(κa)

Finally we must insist on continuity of the derivative at x = −a, which will fix the allowed values
of the energy.

ke−ka = − κe−ka

sin(κa)
cos(−κa)

=⇒ k = −κ cot(κa)

(3)

Plugging in the definitions of k and κ, we find

tan(
√

80
√

1− y) = −
√

1− y
y

in which y ≡ −ma2E
40~2 . Note that 0 < y < 1. Comparing both sides of the equation, we see that

there are exactly 3 bound states (plot both sides of the equation to check).

(4)

The reflectivity for a scattering state coming in from −∞ is nothing but |B|
2

|A|2 from part (2), above.

Recall that we found

ik
(
Ae−ika −Beika

)
= iκ

(
Ae−ika +Beika

) e−iκa − eiκa
e−iκa + eiκa

= κ
(
Ae−ika +Beika

)
tan(κa)

=⇒ ik

κ

(
1− B

A
e2ika

)
= tan(κa)

(
1 +

B

A
e2ika

)
=⇒ B

A
= e−2ika

ik − κ tan(κa)

ik + κ tan(κa)
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Thus we have

R =
|B|2

|A|2
=
κ2 tan2(κa) + k2

κ2 tan2(κa) + k2
= 1

which makes sense since there is an infinite barrier at x = 0. The probability to escape to x = +∞
is zero, and the wavefunction has too much energy to be bound, so it must reflect back to x = −∞
with 100% probability.

2

(1)

∂

∂x
eikx (tanhx+ C) = ikeikx (tanhx+ C) + eikxsech2x

=⇒ ∂2

∂x2
eikx (tanhx+ C) = −k2eikx (tanhx+ C) + ikeikxsech2x− 2eikxsech2x tanhx

so that

−∂
2ψ

∂x2
− 2sech2xψ = eikx

[
k2 tanhx+ Ck2 − iksech2x+ 2sech2x tanhx− 2sech2 tanhx− 2Csech2x

]
= eikx

[
k2 tanhx+ Ck2 − iksech2x− 2Csech2x

]
= k2ψ

for C = −ik/2. Note that as x → −∞, this wavefunction becomes ψ → −(1 + ik/2)eikx a plane
wave incident from the left. As x → ∞, ψ → (1 − ik/2)eikx, a plane wave travelling to the right.
Thus the transmission coefficient is just

T =
|1− ik/2|2

|1 + ik/2|2
=

1 + k2/4

1 + k2/4
= 1

R+ T = 1 =⇒ R = 0.

(2)

Note that the above is a solution to the Schrodinger equation with energy E = k2 for both k and
−k. Thus the general solution is

ψ = Aeikx (tanhx− ik/2) +Be−ikx (tanhx+ ik/2)

We can get the bound state solutions by taking k → ik (equivalent to sending E → −E). This
gives the general bound-state solution

ψ = Ae−kx (tanhx+ k/2) +Bekx (tanhx− k/2)

with energy E = −k2. In the region x < 0 we may throw out the solution which grows unbounded
as x→ −∞, and of course we may perform the analogous cut on the x > 0 solution. This gives

ψ =

{
Aekx (tanhx− k/2) x < 0
Be−kx (tanhx+ k/2) x > 0
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Continuity at x = 0 requires
A = −B

Continuity of the derivative requires

A(1− k2/2) = −A(1− k2/2)

Thus the only bound-state solution is k2 = 2 =⇒ E = −2.

(3)

Since this is the unique bound-state wavefunction, it must also be the ground state. This is further
confirmed by noting that the wavefunction has no nodes, and therefore must be the state of lowest
energy.
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