University of California at Berkeley College of Engineering Dept. of Electrical Engineering and Computer Sciences

EECS 40 Midterm II

Spring 1999

Prof. Roger T. Howe

April 14, 1999

Name: _

last, first

Student ID _____

Guidelines

1. Closed book and notes; one 8.5" x 11" page (both sides) of your own notes is allowed.

- 2. You may use a calculator.
- 3. Do not unstaple the exam.

4. Show all your work and reasoning on the exam in order to receive full or partial credit.

Score

Problem	Points Possible	Score
1	20	
2	20	
3	10	
Total	50	

1. Micromirror Structure [20 points]

Process Sequence:

- 1. Starting material: phosphorus-doped silicon, concentration $5 \times 10^{16} \text{ cm}^{-3}$
- 2. Deposit 200 nm of silicon nitride (see properties below)
- 3. Deposit 200 nm of n-type polysilicon and pattern using **poly1 mask** (clear field)
- 4. Deposit 400 nm of silicon dioxide and pattern using the **oxide1 mask** (<u>clear</u> field).
- 5. Deposit 250 nm of n-type polysilicon and pattern using the **poly2 mask** (clear field)
- 6. Spin photoresist, expose with the **oxide2 mask** (dark field), develop, and etch 400 nm of oxide, strip photoresist.
- 7. Deposit 250 nm of gold and pattern using the **metal mask** (clear field)
- 8. Etch in hydrofluoric acid long enough to remove all remaining oxide; rinse, and dry.

Silicon nitride: $\varepsilon_n = 7.5 \varepsilon_0$ where ε_0 is the permittivity of air or vacuum (8.85 x 10⁻¹⁴ F/cm). It is not etched in any of the processes used to etch oxide, polysilicon, or gold.

(a) [7 pts.] Sketch the cross section *A*-*A*' on the graph below. Identify all layers clearly.

(b) [7 pts.] Sketch the cross section *B-B* on the graph below. Identify all layers clearly.

(c) [3 pts.] Find the numerical value of the capacitance between terminals 1 and 2 in femtoFarads (fF). Use the layout on p. 2 to estimate the area of the capacitor. Note that the substrate is grounded, so it has no contribution to the answer to this part. Hint: terminal 1 is connected to a poly2 structure, whereas terminal 2 is connected to a poly1 structure. The capacitance is between the two polysilicon structures.

(d) [3 pts.] Find the numerical value of the capacitance between terminal 3 and the substrate. Neglect the contribution from the metal layer. Hint: you are not expected to consider capacitors in series to find the answer.

2. Integrated Circuit Resistor Structure [20 points]

Doping concentrations and thicknesses of regions **a**, **b**, and **c**:

a $3 \times 10^{17} \text{ cm}^{-3}$ boron, 2.5 x 10^{17} cm^{-3} phosphorus (0.5 µm thick) **b** 10^{17} cm^{-3} boron, 2.5 x 10^{17} cm^{-3} phosphorus (1 µm thick) **c** 10^{17} cm^{-3} boron (substrate)

Given

Electron mobility: $\mu_n = 1000 \text{ cm}^2/(\text{Vs})$ Hole mobility: $\mu_p = 400 \text{ cm}^2/(\text{Vs})$ Unit charge: $q = 1.6 \text{ x} 10^{-19} \text{ C}$

(a) [2 pts.] What is the type (n or p) and the sheet resistance of layer **a** in the IC structure whose layout and cross section is shown in the figure?

(b) [2 pts.] What is the type (n or p) and the sheet resistance of layer **b** in the IC structure whose layout and cross section is shown in the figure?

(c) [16 pts.] Fill in the table with the numerical value of the currents I_0 , I_1 , I_2 , and I_3 in μ A for the two sets of voltages. If you couldn't solve parts (a) and (b), you can assume for this part that $R_{,a} = 250 \Omega$ / for layer a and $R_{,b} = 100 \Omega$ /. Needless to say, these are *not* the correct answers to parts (a) and (b). Hint: some of the answers are zero.

(Volts)			(MicroAmps)				
V_0	V_1	V_2	V_3	I_0	I_1	I_2	I_3
0	2	1	0.5				
3	7	0.75	3.5				

6

3. Switched capacitor circuit [10 points]

(a) [3 pts.] Find the charge stored on each capacitor at the time $t = 0.5 \,\mu\text{s}$, given that $C = 50 \,\text{fF}$ and $V_{in} = 1 \,\text{V}$. Hint: draw the circuit at that time, using the switch states given above.

(b) [3 pts.] Find the charge stored on each capacitor at the time $t = 1.5 \,\mu\text{s}$, given that $C = 50 \,\text{fF}$ and $V_{in} = 1 \,\text{V}$. The same hint from part (a) applies.

(c) [4 pts.] Find the output voltage V_{out} at the time $t = 1.5 \,\mu\text{s}$, given that $C = 50 \,\text{fF}$ and $V_{in} = 1 \,\text{V}$. The same hint from part (a) applies.