UC BERKELEY EECS 40, Fall 2006

EECS 40, Fall 2006 Prof. Chang-Hasnain Midterm #2

October 25, 2006
Total Time Allotted: 50 minutes
Total Points: 100 / Bonus: 10 pts

- 1. This is a closed book exam. However, you are allowed to bring one page (8.5" x 11"), single-sided notes PLUS your 1-page notes from midterm 1.
- 2. No electronic devices, i.e. calculators, cell phones, computers, etc.

First Name:

- 3. Slide rules are allowed.
- SHOW all the steps on the exam. Answers without steps will be given only a small percentage of credits. Partial credits will be given if you have proper steps but no final answers.
- 5. Remember to put down units. Points will be taken off for answers without units.

Last (Family) Name:

Student ID:	nt ID:Disci		sussion Session:	
Signature:				
!				
	Score:			
	Problem 1 (16 pts)			
	Complex Impedances			
	Problem 2 (54 pts):			
	Bode Plots			
	Bonus (10 pts):			
	Problem 3 (30 pts):			
	Second-order Circuits			
	Total			

EECS 40, Fall 2006 UC BERKELEY

1. [16 points] Parallel and Series Complex Impedance a) [8 pts] What is the complex impedance Z_1 ?

b) [8 pts] What is the complex impedance Z₂?

2. [54 points] Bode Plots:

(a) [10 points] For the above circuit, show
$$H(f) = \frac{1}{1+j\frac{f}{f_2}} \times \frac{1}{1-j\frac{f_1}{f}}$$

Express f_1 and f_2 in terms of R, L, C. (Hint: Remember $\omega = 2\pi f$)

(b) [6 points] Now Let R = 1k Ω , L = 0.16 mH, C = 0.16 uF, what are f_1 and f_2 ? Remember to put down units.

UC BERKELEY		EECS 40, Fall 2006
(c) [22 pt] Bode Magnitude Plot.) Hint: You may consider $f_1 \ll f_2$	You must put down all the steps l	eading to your results.
[4 points] Write down the expression	$ for y = 10\log H(f) ^2$	
[4 points] As frequency goes to a ve	ry small value, what is the slope of	y as a function of $\log f$?
[4 points] As frequency goes to a ve	ery large value, what is the slope of	y as a function of $\log f$?
[4 points] What is y, $f_1 \ll f \ll f_2$?		
[2 points] What is y at f_1 ?		

UC BERKELEY	EECS 40, Fall 2006
[2 points] What is y at f_2 ?	
[2 points] What filter is this?	
[2 points] what lines is this:	
Bonus [5 points] If the input $ V_{in} = 1 V$ and	d the frequency is 1 MHz, what is the output $\left V_{\scriptscriptstyle out} ight $?
Ronus [5 noints] If the input V 1 V ar	and the frequency is 10 MHz, what is the output $ V_{out} $?
bonds to points] it the hipat *in - 1 * at	the frequency is no winz, what is the output Vost
(d) [16 pt total] Bode Phase Plot. You results. Hint: You may consider $f_1 \ll f_2$	must put down all the steps leading to your
[4 points] Write down the expression for \angle	
fd malman tallona was also colon of 2777.65	annuachas to as f + 0.0
[4 points] What does the value of $\angle H(f)$	approaches to as $f \rightarrow 0$?

UC BERKELEY EECS 40, Fall 2006

[4 points] What does the value of $\angle H(f)$ approaches to as $f \to \infty$?

[2 points] What is $\angle H(f)$ at $f = f_1$?

[2 points] What is $\angle H(f)$ at $f = f_2$?

3. [30 points] Second-order Circuits:

Assume the switch has been to the left for a long time before switching to the right at t=0.

(a) Find the following values: [18 points] (Hint: What is $v_o(t)$ in terms of $v_c(t)$?)

$i_L(0+) =$	
$v_c(0+)=$	$v_c(\infty) =$
$v_o(0+) =$	$v_{\theta}(\infty) =$
$\frac{d}{dt}i_L(0+) =$	de .
$\frac{d}{dt}v_C(0+) =$	
$\frac{d}{dt}v_o(0+) =$	

UC BERKELEY	EECS 40, I	Fall 2006		
(b) [6 points] Write the differential equation in terms of v_c .				
(c) [6 points] What are the values of the natural frequency (ω_0) and the damping	g ratio (ζ)	?		