1. Short-Channel MOSFET Model [17 points].

An improved model for the velocity-saturated MOSFET is:

$$\begin{split} i_{D} &= C_{ax} W v_{sot} \left(v_{GS} - V_{Tn} \right) \left(\frac{v_{DS}}{V_{DS,sot}} \right) \left(1 - \frac{v_{DS}}{2V_{DS,sot}} \right) \text{ when } v_{DS} \leq V_{DS,sot} = 0.75 \text{ V (triode region)} \\ &= C_{OX} U_{O} v_{Jc4} \left(U_{C3} - V_{Tn} \right) \left(\frac{-V_{O3}}{\sqrt{29} y_{C4}} - \frac{V_{O3}}{\sqrt{29} y_{C4}} \right) \\ i_{D} &= \left(\frac{1}{2} \right) C_{ax} W v_{sot} \left(v_{GS} - V_{Tn} \right) \left(\frac{1 + \lambda_{n} v_{DS}}{1 + \lambda_{n} V_{DS,sot}} \right) \text{ when } v_{DS} > V_{DS,sot} = 0.75 \text{ V (saturation region)} \end{split}$$

The drain characteristics for this short-channel MOSFET model are:

(a) [4 pts.] What is the small-signal transconductance g_m at the operating point Q_1 in µS? You can find the answer either from the drain current equations or graphically: in either case, be sure to explain your method clearly.

(b) [4 pts] What is the small-signal drain resistance r_o at the operating point Q_1 in kΩ? For this parameter at this operating point, graphical techniques don't give a sufficiently accurate answer. - 123 Lins ha sections

0

(c) [4 pts.] What is the transconductance g_m at the operating point Q₂ in μS? You can find the answer either from the drain current equations or graphically: in either case, be sure to explain your method clearly.

(d) [4 pts] What is the small-signal drain resistance r_o at the operating point Q₂ in kΩ? You can find the answer either from the drain current equations or graphically: in either case, be sure to explain your method clearly. 2. BJT voltage buffer [18 pts.]

(a) [3 pts.] Find the numerical value of V_B such that $V_{OUT} = 2.5$ V. Your answer should be accurate to +/- 5%. Notes: (i) the gray boxes indicate small-signal elements that can be neglected for the DC bias analysis and (ii) the DC base current I_B of the bipolar transistor can be neglected for the bias solution.

(b) [3 pts.] What is the numerical value of the DC collector current I_C for this amplifier? (c) [4 pts.] Find the numerical value of the input resistance R_{in} of this amplifier in k Ω .

(d) [4 pts.] Find the numerical value of the output resistance R_{out} in k Ω .

(e) [3 pts.] Find the numerical value two-port parameter A_v, the open-circuit voltage gain, for this amplifier. (f) [4 pts.] Find the overall voltage gain v_{out} / v_s with R_S and R_L present (values of which are given next to the schematic on the previous page). If you couldn't solve (a), (b), or (c), you can assume that $R_{in} = 7 \text{ k}\Omega$, $R_{out} = 5 \text{ k}\Omega$, and $A_v = 0.8$. Needless to say, these are not correct answers to (a), (b), or (c).

(g) [3 pts.] Suppose that the input voltage $v_s(t) = \hat{v}_s \cos(\omega t)$. What is the maximum amplitude \hat{v}_s for which the small-signal, two-port model you've derived in parts (b)-(c) is reasonably accurate? You can assume that the frequency of $v_s(t)$ is low enough that capacitors can be neglected. Justify your answer.

3. npn bipolar transistors [10 pts.]

(a) [4 pts.] The collector current for this forward-active npn bipolar transistor is $I_C = 25 \ \mu$ A. From the cross section of the device shown above, find the numerical value of the minority electron concentration at x = 0, at the base side of the emitter-base depletion region.

(b) [3 pts.] For the bias conditions in part (a), the base-emitter voltage $V_{BE} = 697.5 \text{ mV}$. What is the doping concentration N_A in the base? If you couldn't solve part (a), you can use $n_{pB}(0) = 8 \times 10^{14} \text{ cm}^{-3}$, which is not the correct answer to part (a), of course.

(c) [3 pts.] The minority hole concentration in the emitter at the edge of the emitterbase depletion region is (0.04)*(your answer to part (a)). What is the forwardactive DC current gain β_F for this transistor? Note that you don't need to have answered part (a) in order to answer this part!