Ground Rules:

- Close book; one 8.5x11 crib sheet (both sides)
- Do all work on exam pages
- Default bipolar transistor parameters:
 - \circ *npn:* β_n =100, V_{An} =50 V, V_{CE-sat} =0.2 V
 - \circ *pnp:* $\beta_p=50$, $V_{Ap}=25$ V, $V_{EC-sat}=0.2$ V
- Default MOS transistor parameters: note LAMBDA depends on L!
 - NMOS: MU_n C_{ox}=100e-6 A/V², LAMBDA_n=[0.1/L] V⁻¹ (L in micrometers) $V_{Tp}=1$ V
 - PMOS: $MU_p C_{ox}=50e-6 A/V^2$, LAMBDA_p=[0.1/L] V⁻¹ (L in micrometers) V_{Tp}=-1 V

Problem #1: Small-Signal Amplifier [24 points]

EE 105, Midterm 2, Fall 1996 Answers

a) [4 pts.] What is width of transistor M_2 such that the DC output voltage $V_{out}=0$ V for $V_{IN}=0$ V. Given: the length of M_2 is $L_2=2e-6$ m.

W=100 micrometers

b) [4 pts.] What is the numerical value of the input resistance R_{in} of this amplifier? Your answer should be correct to within +/- 5%.

If you couldn't solve (a) you can assume for this part that $W_2=25e-6$ m. Of course, this isn't the correct answer to part (a).

R_{in}=14.31 mega-ohms

c) [4 pts.] What is the numerical value of the output resistance R_{out} of this amplifier? Your answer should be correct to within +/- 5%.

If you couldn't solve (a) you can assume for this part that $W_2=25e-6$ m. Of course, this isn't the correct

answer to part (a). R_{out}=260 ohms

d) [6 pts.] What is the numerical value of the overall voltage gain v_{out}/v_s , with $R_s=100$ kilo-ohms and $R_L=20$ kilo-ohms? Your answer should be correct to within +/- 5%.

Again, If you couldn't solve (a) you can assume for this part that $W_2=25e-6$ m. Of course, this isn't the correct answer to part (a).

A_{v-overall}=0.9804

e) [6 pts.] Sketch the transfer curve V_{OUT} versus V_{IN} for -2.5 <= V_{IN} <= +2.5 V on the graph below. For this part, R_L is infinity and R_S =0 V.

Hint: you should note that the current supplies each require at least V_{SUP(min)}=0.5 V in order to function.

Problem #2: Digital Logic Gate [14 points]

a) [2 pts.] What is the logic operation performed by the above circuit? In other words, what is the logical expression for Q in terms of the three inputs A, B and C? Q=(A-bar + B-bar) dot C-bar

b) [4 pts.] The graphs below plot the voltage waveforms over an interval of 35 microseconds. Fill in the output voltage waveform $v_Q(t)$ over 0 -=> 35e-6 s. Note that the rise and fall times are essentiall zero on this time scale.

c) [4 pts.] Find the numerical value of the **best case** low-to-high propagation delay (t_{PLH}) for this logic gate.

t_{PLH}=0.75 ns

d) [4 pts.] Find the width of the n-channel transistor such that the high-to-low propagation delay (t_{PLH}) is equal to your answer for part c). If you couldn't answer part c) you can assume for this part that $t_{PLH (best)} = 1 \text{ ns} = 10^{-9} \text{s}$. **W=6.665 micrometers**

Problem #3: Bipolar Transistor Physics [12 points]

NOTE: The default npn transistors do not apply for this problem!

GIVEN: $N_{dE}=2x10^{18} \text{ cm}^{-3}$ $N_{dB}=10^{17} \text{ cm}^{-3}$ $N_{dC}=10^{16} \text{ cm}^{-3}$

The base and emitter widths are $W_B = W_E = 0.5$ micrometers. The electron diffusion coefficient in the base is $D_{nB} = 10 \text{ cm}^2/\text{s}$ and the hole diffusion coefficient in the emitter is $D_{pE} = 5 \text{ cm}^2/\text{s}$.

a) [3 pts.] Qualitatively sketch the minority carrier concentrations in the emitter, base and collector on the graph below, assuming that the transistor is biased in the forward active region.

b) [3 pts.] For $V_{OUT}=0$ V what is the numerical value of the minority electron concentration at x=0, n_{pB} (0)? You can assume that the transistor is biased in the forward active region. **Not available**

c) [3 pts.] What is the numerical value of the base current I_B for the bias condition in part b)? If you couldn't solve b) assume for this part that $n_{pB}(0) = 10^{15}$ cm⁻³ -- not the correct answer to b), of course.

I_B=2.5 micro-amps

d) [3 pts.] What is the numerical value of V_{IN} in order that the transistor is biased in the forward active region with $V_{OUT}=0$ V?

Notes: You cannot assume that $V_{BE}=0.7$ V for this part. If you couldn't solve parts b) and c) you can assume that $n_{pB}(0)=10^{15}$ cm⁻³ and that $I_B=4$ micro-amps. Neither of these answers are correct, of course. $V_{IN}=3.277$ V

Posted by HKN (Electrical Engineering and Computer Science Honor Society) University of California at Berkeley If you have any questions about these online exams please contact mailto:examfile@hkn.eecs.berkeley.edu