UNIVERSITY OF CALIFORNIA

College of Engineering Electrical Engineering and Computer Sciences Department

EECS 145M: Microcomputer Interfacing Laboratory

Spring Midterm #2 Monday, April 17, 2000

- Closed book (equation sheet handed out with this midterm)
- Calculators OK
- You must show your work to get full credit

Problem 1 (20 points)

In this course we studied several types of A/D converters:TrackingSuccessive ApproximationDual Slope or IntegratingFlash

1a. (5 points) Which is the best A/D converter for very high rates (> 100 MHz) at moderate resolution (10 bits)?

1b. (5 points) Which is the best A/D converter for high resolution (16 bits) at moderate rates (<500 kHz)?

1c. (5 points) Which has the best differential linearity and an accuracy that does not depend on the accuracy of internal resistors?

1d. (5 points) Which requires a sample-and-hold amplifier for full accuracy at its maximum conversion rate?

Name (Last, First)

PROBLEM 2 (35 points) An arbitrary waveform h(t) is periodic with period *P* and contains only frequencies $f < f_{\text{max}}$.

2a. (10 points) h(t) is sampled at a frequency $f_s > 2 f_{max}$ for a time S = 4P. $M = f_s S$ is a power of 2 The sampled values h_k , k = 0 to M - 1 are transformed using the FFT. Which Fourier amplitudes H_n would you expect to be non-zero?

2b. (5 points) If a sinewave of frequency $f = (7/8)f_s$ is added to h(t) before sampling, which Fourier amplitudes would change?

2c. (10 points) If h(t) is sampled at a frequency $f_s > 2 f_{max}$ for a time S = 3.5P, and $M = f_s S$ is a power of 2, which Fourier amplitudes H_n would you expect to be non-zero?

2d. (10 points) If h(t) is sampled as in 2c above and multiplied by a Hanning window before the FFT, which Fourier amplitudes H_n would you expect to be non-zero?

PROBLEM 3 (45 points)

You have been asked to help design a Doppler ultrasound system for measuring the speed of approaching vehicles on a highway. The system sends a continuous tone of 100 kHz sound waves in a well-defined direction and there is a receiver alongside that receives the Doppler-shifted echo. Your part in the project is to design the sampling and signal processing hardware and software, starting from the echo receiver.

- The Doppler-shifted frequency is given by f' = f / [1 v/c], where v is the speed of the approaching vehicle and c is the speed of sound in air (assume 300 m/s).
- To simplify and speed your calculations, use the approximation f' = f [1 + v/c].
- Assume that the echo receiver signal is the sum of 0.1 volt p-p echo and an unavoidable 10 volt peak-to-peak (p-p) primary 100 kHz tone that leaks into the echo receiver.
- The echo circuit has wide-band amplification with white noise, so you decide to use an lowpass 8-pole Butterworth anti-aliasing filter that effectively accepts frequencies below f_1 and rejects frequencies above $2f_1$, where f_1 is a frequency of your choosing.
- Your system samples at frequency f_s , takes *M* samples (where *M* is a power of 2), performs the FFT, and must be able to determine the speed of an approaching vehicle between 3 m/s and 60 m/s to an accuracy of ± 0.3 m/s.

3a. (5 points) What are the echo frequencies for vehicle speeds of 3 m/s, 30 m/s (67 mph), 30.3 m/s, and 60 m/s (134 mph)?

3b. (5 points) How long must your sampling window be to clearly distinguish 30 m/s from 30.3 m/s?

3c. (5 points) How can you reduce the spectral leakage from the 10 volt p-p 100 kHz primary onto the 0.1 v p-p echo frequency?

- **3d.** (5 points) Considering the maximum signal frequency (corresponds to 60 m/s) and the white noise in the echo receiver circuit, what value of f_1 does your low pass filter require?
- **3e.** (5 points) Considering the value of f_1 from part 3d above, and that the filter rejects frequencies above $2f_1$, what is the minimum sampling frequency that prevents the aliasing of white noise between f_1 and $2f_1$ into frequencies below f_1 ?

3f. (5 points) How many samples will you take for each measurement of vehicle speed?

3g. (15 points) Sketch all FFT magnitudes vs. frequency index for a vehicle speed of 30 m/s. You will need to use a vertical axis labeled in powers of ten. Provide an additional label for the horizontal axis in Hz. Assume that the white noise is 10% of the Fourier magnitude of the echo signal.