UNIVERSITY OF CALIFORNIA Electrical Engineering and Computer Sciences

145L MIDTERM #1 (take-home) September 19, 1994

Due Monday, September 26, 1994

(100 points total, 3 points deducted for each school day late) (no credit after graded midterms have been returned to students)

PROBLEM 1 (16 points)

For the differential amplifier circuit shown in Course Reader Figure 2.4, and assuming that the open loop gain A is infinite, do the following:

- a. Derive the expression for the output V_0 as a function of the four variables R_1 , R_2 , R_3 , and R_4 . Your result should be of the form $V_0 = aV_2 bV_1$.
- b. Derive expressions for the differential gain G_{\pm} and the common mode gain G_c in terms of R_1 , R_2 , R_3 , R_4 , using the expression from part a. and the following:

$$V_0 = aV_2 - bV_1 = (a + b)(V_2 - V_1)/2 + (a - b)(V_2 + V_1)/2$$

= G₊ (V₂ - V₁) + G_c V_c, where V_c = (V₁ + V₂)/2

- c. Using your expressions from step b., derive an expression for the CMRR in terms of R_1 , R_2 , R_3 , R_4 .
- d. Under what conditions does $G_c = 0$?
- e. When $G_c = 0$ is satisfied, what does your expression for G_{\pm} reduce to?
- f. For $G_{\pm} = 1$ and $G_{\pm} = 1000$, first set $R_2/R_1 = R_4/R_3 = G_{\pm}$ and then find the percentage variation in R_3 that causes CMR 120 dB. Note that G_{\pm} changes very little. Comment on the resistor accuracy required for a good CMRR at the two differential gains.

Note: G_{\pm} is primarily determined by R_2/R_1 and R_3 (or $R_4) can be used to "fine tune" <math display="inline">G_c.$

PROBLEM 2 (16 points)

You are given an instrumentation amplifier with a gain that is adjustable from 1 to 1000. At a gain of 1, the bandwidth is 10^6 Hz. At a gain of 1000, the bandwidth is 10^4 Hz.

- a. Both input terminals are connected to ground with 5-M resistors. If the input leakage currents on the two inputs are 0.5 nA and 1.5 nA, what is resulting output offset at a gain of 1000? At a gain of 1?
- b. What is the output noise in the 10^4 -Hz bandwidth at a gain of 1000 due only to the room-temperature Johnson noise in the 5-M resistors? (Hint: If two uncorrelated noise sources are added, the rms noises combine as the square root of the sum of their squares.)
- c. When the inputs are connected directly to ground, the output-voltage noise with a gain of 1000 is 1 mV rms in the 10^4 Hz bandwidth. When the gain is reduced to

EECS 145L Midterm #1

1, the output-voltage noise is 0.1 mV rms in the $10^6~Hz$ bandwidth. What is the amplifier noise with respect to the input (D1) and the output (D0)? (Express the noise in units of nV $Hz^{-1/2}$.)

PROBLEM 3 (10 points)

The classic instrumentation amplifier circuit is shown in figure 2.13 of the course reader (page 82).

Assume the following:

- $R_1 = 100$, $R_2 = 5 k$, $R_3 = 1 k$, $R_4 = 10 k$.
- Input $V_+ = +1$ volt d.c. plus 1 mV p-p (peak-to-peak) sine wave at 1 kHz
- Input $V_{-} = +1$ volt d.c. plus 1 mV p-p sine wave at 1 kHz
- Differential input $(V_+ V_-) = 2 \text{ mV p-p}$ sine wave at 1 kHz
- Power supply voltages are -10V and + 10V
- a. What are the amplitudes of the d.c. and 1 kHz components of V_3 ?
- b. What are the amplitudes of the d.c. and 1 kHz components of V_4 ?
- c. What are the amplitudes of the d.c. and 1 kHz components of $V_4 V_3$?
- d. What are the amplitudes of the d.c. and 1 kHz components of V_0 ?

PROBLEM 4 (16 points)

A new instrumentation amplifier circuit has been proposed, as shown below:

Assume the following (same values as Problem 3):

• $R_1/2 = 50$, $R_2 = 5 k$, $R_3 = 1 k$, $R_4 = 10 k$.

- Input $V_+ = +1$ volt d.c. plus 1 mV p-p sine wave at 1 kHz
- Input $V_{-} = +1$ volt d.c. plus 1 mV p-p sine wave at 1 kHz
- Differential input $(V_{+} V_{-}) = 2 \text{ mV p-p}$ sine wave at 1 kHz
- Power supply voltages are -10V and + 10V

Answer the following:

EECS 145L Midterm #1

- a. What are the amplitudes of the d.c. and 1 kHz components of V_3 ?
- b. What are the amplitudes of the d.c. and 1 kHz components of V_4 ?
- c. What are the amplitudes of the d.c. and 1 kHz components of $V_4 V_3$?
- d. What are the amplitudes of the d.c. and 1 kHz components of V_0 ?
- e. Is this circuit design better than the one in Problem 3? Explain your answer.

PROBLEM 5 (10 points)

The formula for the gain of the noninverting amplifier (Course Reader figure 2.3, page 72) is given by:

$$G_{\pm} = \frac{V_0}{V_+ - V_-} = \frac{R_1 + R_2}{R_1}$$

Assume that 10% accuracy resistors are used with values R_1 = 1 $k_{\rm o}$, R_2 = 4 $k_{\rm o}$,

- a. what is the gain G_{\pm} ?
- b. what is the accuracy of G_{\pm} ?

(Hint: use the error propagation formulas given in class and assume that "10% accuracy" means "standard deviation = 10%")

PROBLEM 6 (16 points)

Design a Butterworth filter that passes frequencies from 0 Hz to 1 kHz with an accuracy of 0.1 dB and rejects frequencies above 10 kHz by a factor of 100 dB.

The nth order Butterworth filter has a gain magnitude $\left|G\right|$ and phase shift given by:

$$\left|G\right| = \frac{1}{\sqrt{1 + \left(f/f_c\right)^{2n}}} \qquad \tan \frac{1}{n} = \frac{f}{f_c}$$

- a. What is the minimum order n and the corresponding corner frequency f_{c} that will satisfy the requirements?
- b. What are the phase shifts at 100 Hz and 1 kHz?
- c. What are the time delays at 100 Hz and 1 kHz associated with those phase shifts?

PROBLEM 7 (16 points)

Design a Butterworth low-pass, four-pole filter using the unity-gain Sallen-Key circuit shown in Figure 2.24 and the filter parameters in Table 2.3. The design constraints are that the –3 dB corner frequency is f_0 = 1 kHz, and R = 10 k $\,$.

- a. Determine the component values C_1 and C_2 for each filter section.
- b. Sketch the Bode amplitude plot, assuming that the op amp has infinite open-loop gain at all frequencies.
- c. What happens when you apply a 100 Hz square wave? Sketch the approximate resulting waveform (amplitude vs. time) and explain.

EECS 145L Midterm #1