EECS 20. Midterm No. 1 October 4, 2002. Solution

- 1. **50 points.** Please indicate whether the following statements are true or false. There will be no partial credit. They are either true or false. So please be sure of your answer.
 - (a) $\forall t \in Reals$, $(t, t+1) \in Reals^2$ true
 - (b) $\exists x \in Integers$, $\{(x, x + 1)\} \subset \{1, 2, 3\}^2$ true
 - (c) If $A = \{1, 2\}$ and $B = \{1, 2, 3\}$, then $\exists x \in A$ such that $\forall y \in B, x \le y$. **true**
 - (d) $P(A \cup B) = P(A) \cup P(B)$, where P denotes the power set. **false**
 - (e) For any two functions $f: A \to A$ and $g: A \to A$, where A is a set, $f \circ g = g \circ f$. false
 - (f) Let $f: Reals \to Reals$ be a function where $\forall x \in Reals$, $f(x) = x \sin(x)$. Then f is onto. **true**
 - (g) For the same function f in the previous part, f is one-to-one. **false**
 - (h) Let A=[-1,1]. Consider a function f where $\forall \ x\in A, \ f(x)=x\sin(2\pi x)$. Then $f\in [A\to A]$. **true**
 - (i) $[\{1,2,3\} \to \{1,2\}] \subset [\{1,2,3\} \to Naturals]$. **true**
 - $\text{(j)} \ \ X \times Y \in \{g \mid g = \mathit{graph}(f) \land f \text{:} X \rightarrow Y\}. \quad \text{ false}$
 - (k) Given two state machines A and B, if A simulates B and A is deterministic, then B simulates A. **true**
 - (1) Consider two state machines A and B with state spaces $States_A$ and $States_B$. If in each state machine, all states are reachable, then in the side-by-side composition, all states in $States_A \times States_B$ are reachable. **true**
- 2. **35 points.** Consider the state transition diagram shown below.

Give each of the following:

- (a) $States = \{a, b, c\}$
- (b) $Inputs = \{0, 1, absent\}$

- (c) $Outputs = \{0, 1, absent\}$
- (d) Give the domain and range, and fill in the table for $update: States \times Inputs \rightarrow States \times Outputs$

current	(next state, output symbol) under specified input symbol		
state	0	1	absent
a	(a,1)	(b, 1)	(a, absent)
b	(a, 0)	(c,0)	(b, absent)
c	(c, 0)	(b, 1)	(c, absent)

- (e) initialState = b
- (f) Compose this state machine in a feedback loop, where its output is connected to its input. Assume the output of the composition is the output of this state machine. Give the set *Behaviors* for the feedback composition. You may ignore stuttering reactions, and give only the behaviors with no stuttering reactions.

$$Behaviors = \{((react, react, react, react, ...), (0, 1, 0, 1, ...))\}$$

3. **15 points.** Consider the following two state machines:

These are similar to the machine CodeRecognizer studied in the text and in the homework. Determine whether A simulates B, B simulates A, neither, or both. Give the relevant simulation relations, if any.

A simulates B only.

 $\textit{SimulationRelation} = \{(\textit{start}, \textit{start}), (1, 1), (11, 11), (110, 110), (1100, \textit{start})\}.$