Name:	Student ID No:

UNIVERSITY OF CALIFORNIA

College of Engineering
Department of Electrical Engineering and
Computer Sciences

Professor Ren Fall 1997

EECS 126 — MIDTERM #2

November 17, 1997, Monday 7-9 p.m.

[42 pts.] 1. Given the joint probability density of two RVs X and Y

$$f_{XY}(x, y) = \begin{cases} k(x+y) & 0 \le x \le 1, 0 \le y \le 1\\ 0 & \text{otherwise} \end{cases}$$

- a) Find the value of k, and the cdf $F_{XY}(x, y)$. (6 pts.)
- **b**) Find $F_X(x)$, $F_Y(y)$, $f_X(x)$, $f_Y(y)$. (6 pts.)
- c) Find the probability that $|X Y| \le 1/2$. (6 pts.)
- **d**) Find $f_{X|Y}(x|y)$. (6 pts.)
- e) Find the minimum mean square error estimator of X given Y. Compute the resulting mean square error. (6 pts.)
- **f**) Find the linear minimum mean square error estimator of X given Y. Compute the resulting mean square error. (6 pts.)
- **g**) Are *X* and *Y* independent? Uncorrelated? Orthogonal? Explain your answer. (6 pts.)
- [35 pts.] 2. An electronic system has n components. Let the lifetime of each component be X_i , i=1,2,...,n, in hours. Assume that X_i , i=1,2,...,n, are mutually independent, and have identical density $f_{X_i}(x)=e^{-x}$, $x \ge 0$. Let the lifetime of the system be Y.
 - a) Suppose the system works only if all n components work. Find the pdf and expectation of Y. (10 pts.)
 - **b)** Suppose we already know that the system has already lasted 10 hours. Find the conditional pdf and expectation of *Y*. (12 pts.)
 - c) To increase reliability, we use redundancy by increasing the number of components from n to 2n. Suppose the system works so long as there are at least n components working. Find the cdf of Y. (13 pts.)

- [23 pts.] 3. Let $X_1, X_2, ...$ be a sequence of i.i.d. RVs with mean μ and unit variance. Suppose μ is unknown.
 - a) Propose a scheme to estimate μ from $X_1, ..., X_n$. (5 pts.)
 - **b**) Suppose your estimate of μ based on $X_1, ..., X_n$ is denoted as $\hat{\mu}_n$. Using Central Limit Theorem, find a range of n that would guarantee the quality of the estimate in the following sense:

$$P(|\hat{\mu}_n - \mu| \le 0.1) \ge 0.9 \cdot (18 \text{ pts.})$$