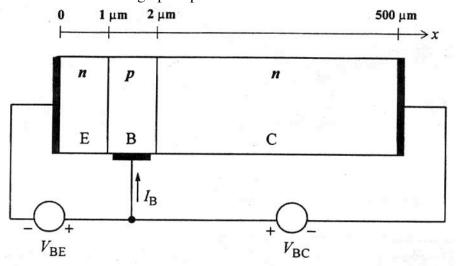

Problem 1 [20 points] Consider an ideal p⁺-n step junction diode in the following circuits:



The switch is closed for all times t < 0, then opened at time t = 0. Assume that $V_{ON} >> v_A$ so that $i(t) = V_{ON} / R$ for times t < 0.

- a) What is the stored hole charge, Qp, inside the diode, for times t < 0?
- b) Derive an expression for Qp(t), for times t > 0
- c) Derive an expression for $v_A(t)$, for times t > 0.

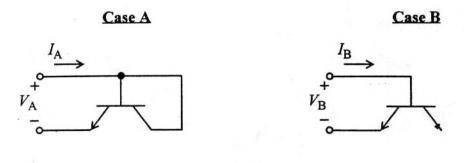
(Assume that the stored charge decays quasi-statically, i.e. the relationship between Qp and v_A is the same as in steady state.)

Problem 2 [40 points] Consider the following npn bipolar transistor:

Assume that each region is uniformly doped, and that both the emitter and base are short, while the collector is long.

Doping concentrations: $N_E = 10^{19} \text{cm}^{-3}$, $N_B = 10^{17} \text{cm}^{-3}$, $N_C = 10^{15} \text{cm}^{-3}$ Minority carrier diffusion constants: $D_E = 2 \text{cm}^2/\text{s}$, $D_B = 19 \text{cm}^2/\text{s}$, $D_C = 12 \text{ cm}^2/\text{s}$ Minority carrier lifetimes: $\tau_E = \tau_B = \tau_C = 10^{-6} \text{cm}^2$.

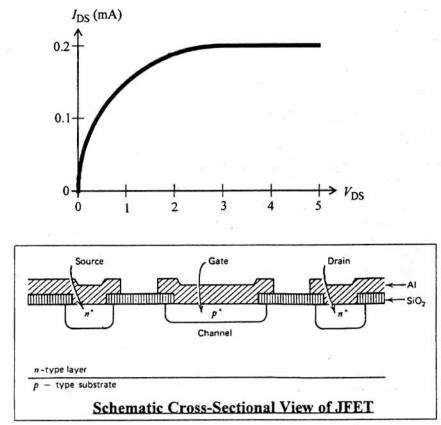
The area of the transistor $A = 10^{-6} \text{cm}^2$.


a) Will this BJT suffer severe base-width modulation under forward active bias operation?

For the remaining sections of this question, consider the case where $V_{BE}=V_{BC}=0.6V$

- b) Sketch the energy band diagram. (Indicate the Fermi levels in the quasi-neutral regions.)
- c) Sketch the excess minority carrier densities in each region: $p'_{E}(x)$, $n'_{B}(x)$, and $p'_{C}(x)$. Write the expressions for those. (You may ignore the widths of the depletion regions.)
- d) What is the value of the base current, I_B , assuming no recombination in the base?

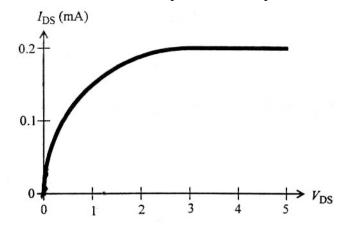
Problem 3 [25 points]


Consider the following two ways to connect an npn BJT as a diode:

- a) Derive the I-V relationship for each "diode" from the Ebers-Moll equations. I_A or I_B should be expressed only in terms of V_A or V_B and the Ebers-Moll parameters (α_F , α_R , I_{ES} , I_{CS}).
- b) Assume the V_A >> kT/q and V_B >> kT/q. Sketch the excess minority carrier concentration in the base for each case, indicating the values of n'_B at the edges of the depletion regions.
 (Assume that the base region of each transistor is short.) Note: For case B, you should use the Ebers-Moll equations to find [exp(qV_{BC}/kT)-1] in terms of V_B=V_{BE}.
- c) Which connection seems most appropriate for use as a diode? Why? (Hints: Compare the switching times for the two cases.)

Problem 4 [15 points]

The following plot is the room-temperature I-V characteristic of an ideal planar Si n-channel JFET with W = 10 μ m and L = 5 μ m and channel doping concentration Nd=10¹⁶cm⁻³.



a) Estimate the turn-off voltage, V_T , from the plot above.

If you did not obtain an answer for part (a), use $V_T = -2V$ for the remainder of this question.

- b) What is the thickness of the channel, t? Assume that the gate region is degenerately doped p-type, and that the width of the depleting region at the channel-substrate junction can be neglected.
- c) Sketch the I-V curve corresponding to $V_{GS} = -1V$ on the plot provided. (Indicate values for V_{DS} at the pinch-off point, and I_{DSAT}) You may use the empirical model:

Sketch the I-V curve on the plot below. [6 pts]

