(3) _____ /20 (4) _____ /20 | | Name | |---|---| | CHEMISTRY 4A
Professor Richard Mathies | November 15, 1993 | | THIRD | MIDTERM | | Name: | | | TA: | | | | | | | | | the space provided for each question. ones that you know first. Then go b | les. You must show all your work in Look over all the problems and do the ack to work on the more difficult ones in constants and some equations will be | | (1)/23 | | | (2) /20 | | | Name | | |------|--| | | | - Answer the following short questions. - (a) What is a complex ion? Give an example. (b) Why is ΔS for the universe always greater than or equal to zero? (c) A gas spontaneously expands into an evacuated container. Indicate whether ΔT , ΔE , ΔH , ΔS , q, w and ΔG are positive, negative or zero. (d) What is the third law of thermodynamics? (e) An ice cube melts. Indicate whether ΔT , ΔE , ΔH , ΔS , q, w and ΔG are positive, negative or zero. | Name | • | |------|---| | | | 2. (a) One mole of an ideal gas at 200 K and 1 atm pressure slowly and isothermally doubles in volume. Calculate ΔE , ΔH , ΔS , q, w and ΔG . (b) One mole of ice at 0° C is converted to one mole of water vapor at 200° C. Calculate ΔS for this entire process. The pressure is constant at1 atm. C_p (ice) = 38 J/mole K Cp (water) = 75 J/mol K C_p (water vapor) = 36 J/mol K ΔH_{fus} = 6,007 J/mol ΔH_{vap} = 40,680 J/mol (c) The equilibrium constant of a reaction is found to increase from 2.64 to 5.28 when the temperature is increased from 50° C to 60° C. Calculate AH° for this reaction. Name____ - 3. Consider the reaction CaF_2 (s) \Rightarrow Ca^{2+} (aq) + $2F^-$ (aq) - (a) What is ΔG° for this reaction? (b) What is the equilibrium constant for this reaction at 298 K? (c) Calculate the solubility of CaF_2 in an aqueous solution. (d) Calculate the solubility of CaF_2 in an 0.1 M solution of NaF. | Name | | | |------|--|------| | | |
 | 4. An unknown mixture of K_2CO_3 (MW = 138.2) and Na_2CO_3 (MW = 106.0) weighing 0.150 gram is dissolved in water and titrated with standard 0.100 M HCl to the bromocresol green endpoint. This titration requires 25 ml of the HCl solution. What is the percent K_2CO_3 in the unknown?