Chemistry 3A - Spring 1998 Midterm Exam # 2

Professor Jean Fréchet	Your full signature	
April 7, 1998	Print your full name	
·	(Last name, First name, Middle)	
	Your SID	
Please check the section number and r	name of your GSI/TA.	
111 DeForest,Sarah	311 DeForest,Sarah	
121 Berseth,Polly	321 Keet,Corinne	
131 Richards,Steven	331 Ponte,Maya	
141 Yamamoto,Kana	341 Seymour,Sean	
151 Brennan,Paul	351 Werkema,Evan	
211 Esker,Todd	411 Esker,Todd	
221 Kriesel,Josh	421 Peters,Eric	
231 Zylstra,Eric	431 Freeman,Adam	
361 Liang,Scott	511 Liang,Scott	
371 Paisner,Sara	521 Magliery,Thomas	
381 Kim,Esther 391 Bise,Ryan	531 Kwon,David 541 Winans,Katherine	
391 Dise,Ryan	551 Janes,Jeff	
	JJ i Janes,Jeii	
If you are making up an I-grade, indic	cate the semester Do Not Write in this Box.	
you took 3A and the Professor		
	1(12)	
This exam has 9 pages; make sure the	at you have them 2(10)	
all. We will only grade answers that ar	e in the 3(14)	
designated spaces. Please do your so	:	
the backs of the exam pages. Write on	v one answer to	
each problem; multiple answers will red		
even if one of them is correct.	6(15)	
	7(12)	
Note: This examination runs for a total	0. (13)	
No questions will be answered by proc	tors after the exam	
begins. Please write legibly; ambiguou	is or messy	
answers will receive <u>no credit</u> .		
	Total(100)	

© 1998 J.M.J. Frechet, Berkeley, CA

Chem. 3A	Midterm Exam #2	Page 2 of 9
1. (12 points)		
(a) Draw a Fisher projection of		
(2S,3R)-2-chloro-3methylhexane		
(b) Name the following compound: (Use IUPAC nomenclature and do not forget stereochemistry)	t HIIIII CH ₂ CH ₃	
Answer:		

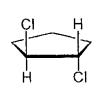
(c) An old bottle of 2-iodobutane has a label marked "2-lodobutane mixture of enantiomers". The optical rotation α of a solution of 0.08g of this mixture in 2 mL of solvent measured in a 5 cm tube is found to be +0.192°. Given that the specific rotation of pure (R)-2-iodobutane is $[\alpha]_D$ = -16°, What is the optical purity of the sample? Calculate the percentages of (S) and (R) enantiomers in the old bottle. Show the equation used for the calculation of $[\alpha]_D$ as well as the details of your calculation.

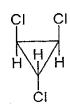
Answers: Optical Purity =

% (S) =

%(R) =

Midterm Exam #2


Page 3 of 9


2. (10 points)

(a) Circle any molecule below that has an (R) configuration according to the Cahn-Ingold-Prelog convention

(b) What is the observed reaction rate for the S_N2 reaction below given the following concentrations: $[CH_3CI] = 0.5 \text{ mol L}^{-1}$; $[OH^-] = 0.03 \text{ mol L}^{-1}$ and the rate constant $k = 0.003 \text{ mol}^{-1} \text{ L s}^{-1}$. Your answer should show an equation for the rate law as well as all calculations.

(c) Circle any compound below that is optically active

4/1998 Chem. 3A

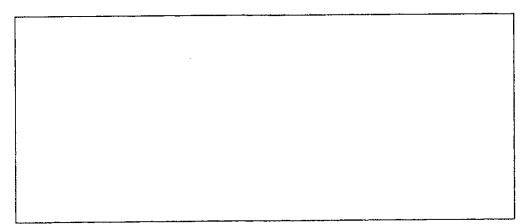
Midterm Exam #2

Page 4 of 9

3. (14 points) (a) **Explain** why treatment of (S)-2-iodooctane with Nal causes the optical activity of the starting material to disappear. Your answer must **name** and describe in one sentence the type of reaction mechanism involved and its **stereochemical consequences** and show a complete equation with **all materials** (starting and final) and their **stereochemistry**.(2-iodooctane is $CH_3CHI(CH_2)_5CH_3$)

(b) Propose a **step-by step** synthesis of CH₃CH=CHCH₃ from **ethanol** as the only source of C atoms. Show **all reagents** required for each step but no mechanisms or curved arrows are needed.

Midterm Exam #2


Page 5 of 9

4. (10 points)

(a) Show the most favorable conformation (as a SAWHORSE projection) of the starting material for the E2 elimination below

$$CH_2CH_3$$
 H
 Br
 $E2$
 H_3C
 CH_2CH_3
 CH_2CH_3
 CH_2CH_3

(b) Show a clear stereochemical representation of the alkene produced in this reaction.

(c) Write clear structures for the products containing no oxygen atom that are formed when 2-bromo-2-methylbutane is allowed to react with excess warm potassium t-butoxide.

$$\begin{array}{ccc} H & & & & \\ C & & CH_2CH_3 & & & & \\ Br & & CH_3 & & & & \\ \end{array}$$

Midterm Exam #2

Page 6 of 9

5. (12 points)

(a) How many stereoisomers are possible in principle for the compound shown below (circle one number)

2 4 6 8

3 9 16 27

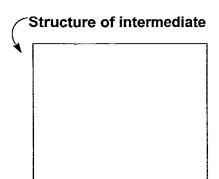
18 20 24 32

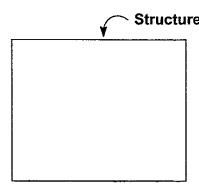
36 48 64 81

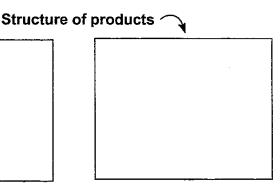
(b) Rank the following nucleophiles in order of reactivity for an S_N2 reaction

ŀ	H	2	()

HS[⊖]


CI⊖


ANSWER:


	>	
Most reactive		

Least reactive

(c) Explain why the free-radical monobromination of affords a racemic mixture. Show the structure of both products and the intermediate leading to them

Brief Explanation: a racemic mixture is obtained because...

Midterm Exam #2

Page 7 of 9

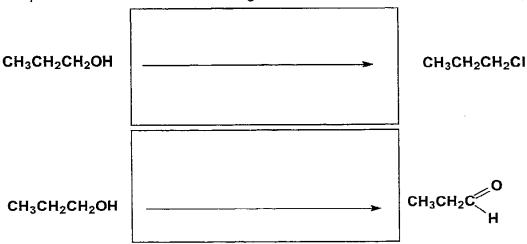
6. (15 points) (a) Show clear structures for all of the products normally expected in the reaction below. Assume that no rearrangement occurs and do not show any mechanism.

$$H_3C$$
 $CH_3 + H_2O$
 $in H_2O$

(b) What is the order of the reaction?

ANSWER: Order of reaction =

(c) Show a complete step-by-step mechanism (show all curved arrows!) for the reaction below


Midterm Exam #2

Page 8 of 9

7. (12 points) (a) Which of the two synthetic routes, A or B, shown below would be best to obtain a high yield of the desired product? Explain your answer discussing briefly the type of mechanism involved and comparing the species in each reaction. Also show a clear structure for the side-product that might be obtained by the less desirable route.

	Answer:	
Answer:	Structure of	
Best route to product	side-product for less desirable route	
	_	

(b) Complete the reactions below showing a clear **structure** for each of the missing reagent(s).

Midterm Exam #2

Page 9 of 9

8. (15 points) Show the structure of the major product(s) obtained in each of the following reactions. Your answer must show clear **stereochemistry** where applicable, write **NR** if no reaction occurs. Do not show any mechanisms!

$$\begin{array}{ccc} H & & CH_3S^{\ominus} \\ \hline & & \\ D & & \\ Br & & \\ \end{array}$$
 Acetone

CH₃ KOH
$$\Delta$$

$$OH \xrightarrow{TsO} DH$$