

Chemistry 1A Fall 1999

Midterm Exam III, version A November 9, 1999

(Closed book, 90 minutes, 145 points)

Name:	Section Number:	
SID:	T.A. Name:	
	Identification Sticker	

Exam information, exam directions, and useful hints to maximize your score:

- ▶ Write your name on all 6 pages.
- ► There are two parts to this exam: 1) multiple choice and 2) short answer problems.
- ► For the multiple choice problems, fill in the ScantronTM form AND circle the answer on your exam.
- ▶ Answer the questions you know how to do first, then work on the questions you skipped.
- ▶ Show all work for which you want credit and do not forget to include units!
- ▶ You may use the back side of the exam pages to show your work and/or for scratch paper.

Potentially useful information:

	micro, μ (x 10 ⁻⁰) mega, M (x 10 ⁶)	
$\Delta \mathbf{G}^{\circ} = \sum \Delta \mathbf{G}_{\mathbf{f}}^{\circ}$	$(products) - \sum \Delta$	G_f° (reactants)
$\Delta \mathbf{H}^{\circ} = \sum \Delta \mathbf{H}_{\mathbf{f}}^{\circ}$	$(products) - \sum \Delta$	H _f (reactants)
$\Delta S^{\circ} = \sum S^{\circ} ($	$(products) - \sum S'$	(reactants)

Unit Prefixes

Thermodynamic Properties				
Substance	ΔH _f °(kJ/mol)	S°(J/mol·K)		
$\operatorname{Cl}_{2}\left(g\right)$	0.0	223.0		
$CO_2(g)$	-393.5	213.6		
$H_2O(1)$	-285.8	69.91		
H ₂ SO ₄ (1)	-814.0	156.9		
$Fe_2O_3(s)$	-824.2	87.4		
FeS ₂ (s)	-178.2	52.93		
$O_2(g)$	0.0	205.03		

c _P (H ₂ O (l))	$= 75.3 \frac{J}{\text{mol} \cdot K}$
	IIIOI · K
$q_v = nc_v \Delta T$	$q_P = nc_P \Delta T$
$\Delta G = \Delta H - T\Delta S$	$S = k_B \ln W$
$\Delta G^{\circ} = \Delta H^{\circ} - T_{\circ}$	$\Delta S^{\circ} = -RT \ln K$
$\Delta E = q + w$	PV = nRT
1 cal = 4.184 J	1000 cal = 1 Cal

(Do not write in this box, it's for official use only)

<u> </u>	o b 101 01110101 ubb (1111)
Problems	Points
multiple choice	/ 44
Part 2, # 1	/ 30
Part 2, # 2	/ 18
Part 2, # 3	/ 25
Part 2, # 4	/ 28
all	/ 145

Page 2 of 6

Part 1: Multiple Choice. (4 pts each, 44 pts total)

Instructions: Bubble in the correct answer on your Scantron TM form AND circle the answer on your exam. Each question has one correct answer.

- The answer to question 1 is A. Bubble in A on your Scantron TM form. 1.)
- 2.) Consider the sublimation of dry ice:

$$CO_2(s) \rightleftharpoons CO_2(g)$$

If K₁ is the equilibrium constant at 300 K, and K₂ is the equilibrium constant at 400 K, which of the following inequalities must be true?

- A.) $K_1 = K_2$ B.) $K_1 = K_2^{-1}$ C.) $K_1 K_2 = 0$ D.) $K_1 > K_2$ E.) $K_1 < K_2$

3.) For the vaporization of methanol

$$CH_3OH(1) \rightleftharpoons CH_3OH(g)$$
,

 $\Delta H^{\circ} = 38.0 \text{ kJ mol}^{-1}$ and $\Delta S^{\circ} = 112.9 \text{ J K}^{-1} \text{ mol}^{-1}$. What is the boiling point of methanol at sea level? Assume ΔH° and ΔS° are independent of T.

- A.) 64 K
- B.) 237 K
- C.) 273 K
- D.) 337 K
- E.) 373 K

4.) Consider the reaction:

$$N_2(g) + 3H_2(g) \implies 2NH_3(g)$$

at equilibrium. What would be the reaction quotient immediately following the reduction of volume by two at constant temperature before any reaction occurs?

- A.) $Q = \frac{1}{4}K$ B.) $Q = \frac{1}{2}K$
- C.) Q = K D.) Q = 2K
- E.) Q = 4K
- 5.) One mole of an ideal gas expands isothermally against a constant pressure of 1 atmosphere. Which of the following inequalities is true?
 - A.) $\Delta P > 0$
- B.) q > 0
- C.) $\Delta S < 0$
- D.) $\Delta V < 0$
- E.) $\Delta T < 0$

Page 3 of 6

Name:

- 6.) One mole of an ideal gas expands *adiabatically* against a constant pressure of 1 atmosphere. Which of the following inequalities is true?
 - A.) $\Delta P > 0$
- B.) q > 0
- C.) $\Delta S < 0$
- D.) $\Delta V < 0$
- E.) $\Delta T < 0$
- 7.) At what temperature does K = 1, $\Delta G^{\circ} = 0$ for the reaction $H_2O(1) \Longrightarrow H_2O(g)$?
 - A.) -273 °C
- B.) 0 °C
- C.) 100 °C
- D.) 273 °C
- E.) 373 °C
- 8.) How many different ways can you distribute six distinguishable stones between two boxes with five in the first box and one in the second box?
 - A.) 1
- B.) 3
- C.) 6
- D.) 9
- E.) 15
- 9.) The caloric content of 10 little cookies can heat up 10 kg of water by 10 °C. What would be the change in temperature if 1 little cookie was used to heat up 1 kg of water?
 - A.) 0.1 °C
- B.) 1.0 °C
- C.) 10 °C
- D.) 100 °C
- E.) 1000 °C

For each of the problems 10-12, select the graph that best describes the behavior listed.

- 10.) $P_{N_2O_4}$ as a function of $(P_{NO_2})^2$ for N_2O_4 (g) \longrightarrow 2NO₂ (g), at constant T.
- 11.) ln(K) as a function of $\frac{1}{T}$ for a the combustion of liquid methanol (CH₃OH).
- 12.) ΔG° as a function of T for the vaporization of water, $H_2O(1) \longrightarrow H_2O(g)$.

Page -	4 of 6		Name:	
Instru			(101 pts total) boxes provided. Show	our work. Explain your answer when requested in
(30 pt 1.)	ts) The reaction			
		so	$O_2Cl_2(g)$ \longrightarrow SO_2	$(g) + Cl_2(g)$
		ic with $\Delta H = 4$ oressures of 3.0		nd SO_2 (g) are placed in a bulb at a fixed temperature
a)	Write the exp	oression for rea	action quotient (Q) and o	alculate its value before any reaction occurs.
				Answers:
b)				fixed temperature, the partial pressure of Cl_2 (P_{Cl_2}) is of SO_2Cl_2 and SO_2 ($\text{P}_{\text{SO}_2\text{Cl}_2}$ and P_{SO_2})?
				Answers:
c)	Calculate the	value of the e	quilibrium constant for t	he reaction in part b).
				Answer:
d)				the pressure of SO ₂ increase, decrease, or stay um state? Circle the answer and explain.
	Decrease	Same	Increase	Explanation:

Page	5 of 6 Name:	
(18 p 2.)	ts) Consider the reaction of silver chloride (AgCl) dis	ssolving in water.
	$AgCl(s) \longrightarrow Ag^+(aq)$	q) + Cl ⁻ (aq)
a)	Dissolving 14.3 g of AgCl (s) consumes 6.5 kJ of l AgCl(s) totally dissolves in 1.00 L of water initiall	
		Answer:
b)	In actuality the equilibrium constant (K) for this rethis affect the temperature change predicted in part	eaction is very small (1.6 x 10 ⁻¹⁰ at 25.0 °C). How witt (a)? Explain.
		Answer:
(25 pt 3.)		ks older than 2 billion years contain iron in the form oppears mostly as the oxide Fe_2O_3 (hematite).
	$4 \text{ FeS}_2 (s) + 8 \text{ H}_2 O (l) + 15 O_2 (g)$	$2 \text{ Fe}_2\text{O}_3 \text{ (s)} + 8 \text{ H}_2\text{SO}_4 \text{ (l)}$
a)	Calculate ΔH° for the above reaction.	
		Answer:
b)	Calculate ΔS° for the above reaction.	<u> </u>
		Answer:
c)	Over what temperature range is this reaction sponta	aneous? As always, show your calculations.
		Answer

₫006

rage o or	age 6 of 6	5
-----------	------------	---

Name:		

(28 pts)

4.) Consider the hydrogenation of formaldehyde (H₂C=O) to form methanol (CH₃OH).

$$CH_2O + H_2 \longrightarrow CH_3OH$$

Average Bond Energy (kJ/mol)			
Н-Н	436	C-O	360
H-C	413	C=O	743
H-O	463	C-C	348
0-0	146	C=C	612
O=O	497	C≡C	838

a) Estimate ΔH^0 for this reaction	a)	r this reaction	H° for th	Estimate	a)
--	----	-----------------	-----------	----------	----

Answer:		

b) The formation of which species, formaldehyde or methanol, is more exothermic (i.e. has the lower ΔH_f°)?

Answer:			- 1
AIISWCI.			

c) The combustion of which species, formaldehyde or methanol, produces more heat per mole?

Answer:		