Chemistry 130A	First Midterm Exam	Sept. 15, 1999	50 min	1	
Name	Discussion Leader			3	
Prof. K. Sauer	SHOW YOU	D HIADIZ		4	
Total Points - 100	SHOW YOUR WORK			Т	

Data: $R = 8.314 \text{ J K}^{-1} \text{ mol}^{-1} = 0.082 \text{ L atm K}^{-1} \text{ mol}^{-1}$

- (Credit 24) For each of the following processes, is the enthalpy change, ΔH, greater than, equal to or less than zero? In each case, state whether there is a change in <u>only the kinetic energy</u>, <u>only the potential energy</u>, <u>both</u> or <u>neither</u> for the system The system in each case is given in <u>italics</u>.
 - a) 100 mL of liquid water is vaporized at 100°C and a constant pressure of 1 atm.

b) A mixture of methane and oxygen at room temperature is ignited and converted to hot CO₂ (g) and H₂O (g), releasing heat to the surroundings.

An *ice cube* initially at 0°C is placed into *1L of liquid water* initially at 25°C, all in a thermally insulated container. The ice cube melts completely and the system comes to equilibrium.

-2-

Name	

- 2. (Credit 20) A heavy dictionary is sitting on the floor of your room. You need to lift it to the top of a bookcase that is 4 feet high. You decide to do the lifting in 2 stages.
 - A. First you lift the dictonary from the floor to a shelf 2 feet above the floor.
 - B. Next you lift it from the shelf to the top of the bookcase.

Compare the amount of work that you do in steps A and B. Circle the correct answer below.

$$| w_A | > | w_B |$$

$$w_A = w_B$$

$$| w_A | < | w_B |$$

Briefly explain your reasoning.

-3-

Name		
1 TAILLO	 	

3. (Credit 30) For the following statements underline the word or words inside the parentheses that serve to make a correct statement. More than one answer may be correct. One credit will be subtracted for any wrong answers underlined. Asterisks (*) are in the margin to indicate where answers are needed.

For an ideal gas the enthalpy will necessarily change if there is a change in the

- * (pressure, volume, temperature, number of moles) of the gas. If a fixed amount of an ideal gas undergoes an adiabatic expansion against a pressure of 1 atm, the temperature of the
- * gas will (increase, remain unchanged, decrease). If the adiabatic expansion occurs into a
- * vacuum, the temperature of the gas will (increase, remain unchanged, decrease).
- An isolated system is one where no (temperature difference, work, heat transfer, chemical difference) can occur between it and the surroundings. A green plant, where metabolism occurring inside the plant cells is driven by light, takes up atmospheric CO₂
- * and releases O₂, is an example of a (closed, isolated, open) system. If the system is taken
- * from an initial to a final state at the same temperature, then the (heat, enthalpy change, internal energy change, work) is independent of the path taken. To calculate the enthalpy
- * change at a different temperature, we need to know values for $(\Delta V^{\circ}_{fus}, C_{v}, C_{p}, \Delta P^{\circ})$ for the system.

When an exothermic chemical reaction occurs at a constant pressure, like the decomposition of aqueous H_2O_2 initially at 25°C to produce water and gaseous O_2 , the

- * temperature will necessarily change if the process is carried out (isobarically, isothermally, adiabatically, in isolation from the surroundings). For this reaction the enthalpy change ΔH
- * is (more negative than, equal to, less negative than) the internal energy change ΔE .

 Decreasing the concentration of H_2O_2 in the aqueous solution results in a corresponding
- * decrease in the (molar enthalpy change, final temperature, final pressure, final volume) if the reaction is carried out in a thermally insulated container.

_4.

Standard Enthalpies of Formation		Average Bond Dissociation Enthalpies at 25°C		
Compound	ΔH° _{f,298} (kJ mole ⁻¹)	Bond	D(kJ mol ⁻¹)	
H ₃ C-CH ₂ -S-CH ₂ -CH ₃ (g)	-83.47	C-C	344	
$H_3C-CII_2-S-S-CH_2-CH_3$ (g)	-74.64	С-Н	415	
H_3C-CII_2 -S-H (g)	-46.11	C-O	350	
S (g)	278.8	C-S	288	
C (g)	716.7	0-0	143	
H (g)	218.0	O-H	463	
· ·		S-H	368	

- 4. (Credit 14+12) One of the factors that stabilizes the structure of proteins is the presence of disulfide bonds between cysteine amino acid side chains. The disulfide bond, S-S, is relatively weak and is sometimes broken under denaturation conditions.
 - a) Calculate the bond dissociation enthalpy for the disulfide bond, D(S-S), using the data above.

-5-

Name____

4. b) The molecule glutathione, GSH, is a tripeptide containing cysteine that is present at high levels (5 mM) in animal cells. It serves as a sulfhydryl buffer by cycling between a reduced thiol form (GSH) and an oxidized form (GSSG), in which two tripeptides are linked by a disulfide bond. Glutathione plays a key role in detoxification by reacting with hydrogen peroxide

2GSH + HOOH
$$\rightarrow$$
 GSSG + 2H₂O

Use your result from part (a) together with other bond enthalpies to estimate ΔH°_{298} for this reaction.