
University of California, Berkeley
College of Engineering

Computer Science Division | EECS

Fall 1997 D.A. Patterson

Midterm I - SOLUTIONS

October 8, 1997

CS152 Computer Architecture and Engineering

You are allowed to use a calculator and one 8.5" x 1" double-sided page of notes. You

have 3 hours. Good luck!

Your Name:

SID Number:

Discussion Section:

1 /20

2 /10

3 /10

4 /30

Total /70

Question 1

You are running a benchmark on your company's processor, which runs at 200 MHz, and has these
characteristics:

Instruction Type Frequency (%) Cycles

Arithmetic and Logical 40 1

Load and Store 30 2

Branches 20 3

Floating Point 10 4

Your company is considering o�ering a cheaper, lower-performance version of the processor. Their
plan is to remove some of the oating point hardware to reduce the die size of the chip.

The wafer on which the chip is produced has a diameter of 10cm, a cost of $1000, and 1=(cm2)
defects. The manufacturing process results in a 90% wafer yield and a value of 2 for �.

The current processor has a die size of 12mm�12mm. After the changes, the die size will be
10mm�10mm, and oating point instructions will take 12 cycles to execute.

Here are some equations you may �nd useful:

dies/wafer = ��(wafer diameter=2)2
die area � ��wafer diameterp

2�die area

die yield = wafer yield �
�
1 + defects per unit area�die area

�

���

a) What is the CPI and MIPS rating of the original processor?

CPI = (1 � :4) + (2 � :3) + (3 � :2) + (4 � :1) = 2

MIPS = 200=2 = 100

b) What is the CPI and MIPS rating of the smaller processor?

CPI = (1 � :4) + (2 � :3) + (3 � :2) + (12 � :1) = 2:8

MIPS = 200=2:4 = 71:4

2

Question 1 (cont)

c) What is the old cost per (working) processor?

dies/wafer = ��(5)2
1:44 � ��10p

2�1:44
= 78:54

1:44 � 31:42
1:70

= 54:54� 18:48
= 36:05 = 36

die yield = :9 �
�
1 + 1�1:44

2

��2
= :9 � (1 + :72)�2

= :9 � :338 = :30

working processors = :30 � 36 = 10

die cost = $1000=10 = $100

d) What is the new cost per (working) processor?

dies/wafer = ��(5)2
1 � ��10p

2�1
= 78:54

1 � 31:42
1:41

= 78:54� 22:28
= 56:26 = 56

die yield = :9 �
�
1 + 1�1

2

��2
= :9 � (1 + :5)�2

= :9 � :444 = :40

working processors = :40 � 56 = 22

die cost = $1000=22 = $45

e) What is the improvement in price per performance?

$100=100
$45=71:4 = 1

:63 = 1:59

3

Question 1 (cont)

Your competitors produce a chip that runs at 250 MHz and has the following characteristics for
the benchmark:

Instruction Type Frequency (%) Cycles

Arithmetic and Logical 40 1

Load and Store 30 3

Branches 20 3

Floating Point 10 5

f) What is the CPI and MIPS rating of your competitor's processor for this benchmark?

CPI = (:4 � 1) + (:3 � 3) + (:2 � 3) + (:1 � 5) = 2:4
MIPS = 250=2:4 = 104

g) Your company's advertising department wants to defend your company's motto (\The Appear-
ance of Excellence") by advertising a higher MIPS rating for your processor than your competitor's
processor. They want you to write a benchmark that gives this result. Describe an instruction mix
that would accomplish this (give speci�c percentages of each instruction type).

Your benchmark must have a large amount of load or store instructions, since these instructions
execute in less time on your processor than on your competitor's processor. For example, a mix of
half arithmetic/logical and half load/store would give your machine:
CPI = (:5 � 1) + (:5 � 2) = 1:5; MIPS = 200=1:5 = 167
and your competitor's machine:
CPI = (:5 � 1) + (:5 � 3) = 2; MIPS = 250=2 = 125

4

Question 1 (cont)

h) Instead, you decide to improve the compiler that is used to compile this benchmark on your
processor. Your compiler reduces the branches by 50%, but it increases the number of arithmetic
and logical instructions by 25%; it does not a�ect the number of other instructions. What is your
new CPI and MIPS?

CPI = (:5 � 1) + (:3 � 2) + (:1 � 3) + (:1 � 4) = 1:8
MIPS = 200=1:8 = 111

i) Using the original instruction mix, which machine is faster? Why?

Speedup = ExecutionT imeexcellence
ExecutionT imecompetitor

= CPIexcellenceTCLKexcellence

CPIcompetitorTCLKcompetitor
= 2�5

2:4�4 = 1:0416

Thus, the competitor's processor is 1.0416 times faster or 4.16% faster.

5

Question 2

The ALU presented in the book supported set less than (slt) using the sign bit of the adder
(a < b, a� b < 0). Let's try the set less than operation using the values �7ten and 6ten. To make
it simpler to follow the example, let's limit the binary representation to 4 bits: 1001two and 0110two.

1001two � 0110two = 1001two + 1010two = 0011two

The result suggests that �7 > 6, which is clearly wrong. Hence we must factor in overow in the
decision. Modify the given schematic below of the 1-bit ALU for the most signi�cant bit to handle
slt correctly. You have to �x the set output, which is same as ADDout in this schematic. Explain
your modi�cations and give the new function for the set output as well. Assume that the overow
signal is correct and can be used and that the gates available to you are: inverters, AND and OR.

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

��

�
�
�
�

�
�
�
�

��

��

�
�
�
�

����
��������

A

B

Less

Bitvert CarryIn Operation

ADDout

Result

0

1

0

1

2

3

Overflow
Detection

+

Overflow

A

set

When a and b have the same sign there can be no overow, so set is the output of the adder (just
like before). An overow can happen only when a > 0 and b < 0, or a < 0 and b > 0. In the �rst
case set should be 0 (a > b), while in the second one it should be 1 (a < b). So the function for set is:

set = overflow � adder output + overflow � a
where a is the MS bit of the �rst operand, in other words its sign.
This can be implemented with 1 inverter, 2 AND and 1 OR gates as shown in the schematic above.

Another valid solution is to XOR the overow and ADDout. signals. In the case of non-overow,
set is the same with ADDout. When overow occurs, set is the inverse of ADDout.

6

Question 3

The �gure picture presents the portion of the schematic of a full adder that calculates the carry
out signal.

CarryIn

A

B

CarryOut

Assume the following characteristics for the gates:

AND2: Input load=150fF, propagation delay low-to-high TPlh=0.2ns, propagation delay high-
to-low TPhl=0.5ns, load dependent delay TPlhf=TPhlf=0.002ns/fF .

OR2: Input load=100fF, propagation delay low-to-high TPlh=0.5ns, propagation delay high-to-low
TPhl=0.1ns, load dependent delay TPlhf=TPhlf=0.002ns/fF .

Identify the critical path in this schematic and fully characterize its delay using the linear delay
model. Assume that the last OR2 gate drives a capacitance of 300fF.

The critical path for CarryOut consists of 3 gates, one AND and two OR in the row. There is no
need to calculate the delay for the path with the 2 gates (one AND and one OR) since, excluding
the additional OR gate, the two paths have the same gates with the same loads.

TPtotal = TPAND + TPOR1
+ TPOR2

For each gate: TP = TPinherent + TPloaddepedent �Capload
For low-to-high:
TPLH = (0:2 + 0:002 � 100) + (0:5 + 0:002 � 100) + (0:5 + 0:002 � 300) = 2:2ns

For high-to-low:
TPHL = (0:5 + 0:002 � 100) + (0:1 + 0:002 � 100) + (0:1 + 0:002 � 300) = 1:7ns

7

Since the cell delay is the worst case one, the delay of the CarryOut calculation is 2.2ns.

8

Question 4

In October of 1996, Silicon Graphics introduced a new set of instructions known as MIPS Digital
Media Extensions (MDMX). Similar to the Intel MMX, the MDMX speci�cation uses a single
instruction multiple data (SIMD) data path to perform parallel narrow data operations on bytes
and halfwords within a single instruction.

The MDMX has yet to be implemented on a commercially available microprocessor. We will
explore some MDMX ideas by extending the single cycle datapath discussed in class. Where the
real MDMX uses 64-bit oating point registers, we will use the 32-bit integer registers to perform
parallel operations on two half words (\Dual Halfs" instructions).

Consider two pseudo-MDMX instructions (based on the real MDMX!), ADD.DH and MAX.DH.
ADD.DH adds two 16-bit signed integers in parallel. MAX.DH is more unusual. It performs two
simultaneous comparisons and stores the larger results in a third register. The register transfer
operations are given below. R[x][0] refers to the half word in bits 15:0 of register x, and R[x][1]
refers to bits 31:16.

INSTRUCTION rd, rs, rt

ADD.DH $r1, $r2, $r3 R[rd][0](R[rs][0]+R[rt][0]
R[rd][1](R[rs][1]+R[rt][1]
PC(PC+4

MAX.DH $r1, $r2, $r3 for i=0,1 begin
if (R[rs][i] < R[rt][i]) then

R[rd][i](R[rt][i]
else

R[rd][i](R[rs][i]
end
PC(PC+4

9

Question 4 (cont)

a) The single cycle processor developed in class is shown below. Make the necessary datapath
modi�cations for the two MDMX instructions. You may use a 16-bit version of the 32-bit ALU. If
you de�ne your own component, be sure to specify its behavior. Label your control signals with
descriptive names. To maximize your chances for partial credit, write down anything else that will
help us evaluate your work (you do not need to specify the control functions until part b). You will
be graded for correctness more than e�ciency. An additional datapath (in case you needed it) is
provided in the following page.

The meaning of some control signals are given below.
nPCSel : 0) PC PC + 4; 1) PC PC + 4 + SignExt(Imm16) k 00
ALUCtr : \add00; \sub00; \and00; \or00; \slt00(signed comparison)
ExtOp : \zero00; \sign00

M
U

X

0

1

32

32

5

32

32

16

5 5

MUX1 0

32-bit A
L

U

32

32

16

16

M
U

X

0

1

0 1MUX

32

32

32

16

16

16

16 2

Register File

Imm16

E
xtender

RegWr

ExtOp

ALUSrc

busB

busA

Rs

Ra Rb RW

Rt

Rd Rt

RegDst

CLK

busW

ALUctr

Data Memory

WrEnData In

CLK

MemWr

Instruction
Fetch Unit

Instruction<31:0>

<
21:25>

<
16:20>

<
11:15>

<
0:15>

Imm16 Rd RtRs

nPC sel

CLK

16-bit A
L

U
16-bit A

L
U

Adr

MDMX-ALUctr

3 to 1 M
U

X
3 to 1 M

U
X

busLow

busHigh

MDMXSrcL

MDMXSrcH

Zero

MDMXSel

MemtoReg

0

1

2

0

1

10

b) For ADD.DH and MAX.DH, give the values of all control signals, including those you added
in part (a). The control signals can be functions of other control signals, values labeled on the
datapath, or don't cares. Use b[i] to denote bit i on bus b. You may use high level speci�cations
such as if-then-else. The number of grids below is not an indication of the number of control signals
you will need.

Control Line ADD.DH MAX.DH

nPCSel 0 0

RegDst 1 1

RegWr 1 1

ExtOp X X

ALUSrc X X

ALUCtr X X

MemWr 0 0

MemtoReg 0 0

MDMX-ALUctr add slt

MDMXSrcH 1 if(busHigh[0]==1) 0 else 2

MDMXSrcL 1 if(busLow[0]==1) 0 else 2

MDMXSel 1 1

11

Extra Credit. 16 16-bit signed integers are stored in memory as follows:

0x00000000 (half-word 0)
0x00000002 (half-word 1)
0x00000004 (half-word 2)
.
.
0x0000001E (half-word 15)

The following MIPS code (assuming no delay slots) �nds the largest integer and stores the result
in lower 16 bits of $v0. Since we are dealing with half words, the �nal value of the upper 16 bits of
$v0 is irrelevant.

lh $v0, 0x001E($zero) #assume the last number is the largest

addi $t0, $zero, 0x001C #initialize the half-word pointer

LARGEST:

lh $s0, 0($t0) #load next half word

slt $t1, $v0, $s0 #update $v0 if $s0 is larger

beq $t1, $zero, NEXT

addi $v0, $zero, $s0

NEXT:

addi $t0, $t0, -2 #continue the search until pointer becomes negative

slt $t1, $t0, $zero

beq $t1, $zero, LARGEST

END:

Take advantage of the parallelism in MAX.DH to write a faster version of this code. Exactly how
many instructions are executed in your code? What are the minimum and maximum number of
instructions executed in the non-MDMX code given above?

12

Answer:

lw $v0, 0x001C($zero)

addi $t0, $zero, 0x0018

LARGEST:

lw $v1, 0($t0)

max.dh $v0, $v0, $v1

addi $t0, $t0, -4

slt $t1, $t0, $zero

beq $t1, $zero, LARGEST

srl $v1, $v0, 16 #put the larger half-word in $v0 into the lower

max.dh $v0, $v0, $v1 #16-bits of $v0

END:

Instruction counts:
MDMX) 2 + 7*5 + 2 = 39
non-MDMX min) 2 + 15*6 = 92
non-MDMX max) 2 + 15*7 = 107

13

