
CS152 Computer Architecture and Engineering
Computer Science Division

Department of Electrical Engineering and Computer Sciences
University of California, Berkeley

Sp97 D.K. Jeong

Midterm #1
March 3, 1997

Name
Key

SID Number

Discussion Section

You may bring one double-sided note. You have 180 minutes. Please write your name on
this cover and also at the top left of each page. The point value of each question is
indicated in brackets after it. Make sure to show your work to get at least partial credit.

Problem Possible Score

1 15

2 20

3 10

4 20

5 15

Total 80

Name:

Question 1. (Performance) [15 pts]

You are to improve cost/performance on an existing system based on a single-chip
microprocessor having the following parameters.

Base Machine Clock Frequency 100MHz

Die Size 10 mm x 10 mm

Instruction Mix int 62 %

FP 38 %

CPI int 1.6

FP 4.2

(a) What is the MIPS number of the base machine? [2 pts]

 CPI = Σ CPIi * ICI, where CPI is cycles per instruction, and IC is instruction count.

CPI = 1.6*.62 + 4.2 * .38 = 2.588

MIPS = Clk freq/CPI = 100 MHz/2.588 = 38.64 MIPS

By using an optimizing compiler, the number of FP instructions is reduced by 20% and int
instructions by 10% for the same application program.

(b) What is the new MIPS number of the base machine when using the optimizing
compiler? (Instruction mix is changed!)[2 pts]

 Instruction mix has changed, so that there is a different proportion of FP and int
instructions. Therefore, we need to recalculate CPI:

 CPI = (0.9 *.62*1.6 + .8*.38*4.2) / (.9*.62 + .8*.38) = 2.5169

 The denominator represents the decrease in Instruction Count, due to the
optimizing compiler.

MIPS_comp = Clk freq/CPI = 100MHz/2.5169 = 39.73 MIPS

(c) When running the same application, how much performance gain do you expect from

using such an optimizing compiler? [2 pts]

MIPS is about the same, but IC has reduced. The relative performance is given by:

Performance_comp = . 38.64 MIPS . = 1.128
Performance_base 39.73 MIPS / (.9*.62 + .8*.38)

The optimizing compiler improves performance by 12.8%.

By re-designing an FP hardware, die size will be increased by 20%, its FP CPI will be
reduced to 2.8, clock frequency will remain as the same.

(d) What is the new MIPS number of this improved machine with an ordinary compiler?
[2 pts]

CPI = 1.6*.62 + .38*2.8 = 2.056

MIPS = 100 MHz/2.056 = 48.64 MIPS

(e) Assuming die yield is proportional to the inverse of the cube of the die size, how much
additional cost do you expect? Assume that the number of dies per wafer is inversely
proportional to the die size and that all the cost is proportional to the die.[2 pts]

Cost is inversely proportional to yield—as yield goes down, cost goes up. The yield
goes down by the cube of the area: if the area goes up by 1.2x, the yield goes down
by (1.2)3x . Also, we can fit less dies on a wafer as the area goes up. If the area
increases by 1.2x, we can fit 1.2x less dies per wafer. Since the cost per wafer stays
the same, the cost per die goes up.

The cost went up by 107%.

073.2)2.1(
1

)2.1/(1*2.1/1

1

_*/

/
_*/

/

_

_ 4
3

====

yelddiewaferdies

waferCost
yielddiewaferdies

waferCost

baseCost

FPCost

As an alternative, you are going use a new, scaled CMOS technology without re-
designing. In that case, the clock frequency changes to 125 MHz, its wafer cost doubles,
and its die size is reduced by 15%. Use the same yield rule.

(f) How much performance improvement over the base machine do you expect? [1 pts]

The CPI and IC is the same as the base machine. The only difference is the clock
rate.

Performance_scaled = 125 MHz = 1.25 improvement.
Performance_base 100 MHz

The scaled CMOS is 25% faster.

(g) How much additional cost over the base machine do you expect? [2 pts]

The new technology is 15% smaller, that is 1-.15 = .85x the base machine.

 .

The scaled CMOS costs 1.044 times as much or 4.4% more.

(h) Compare the two hardware options and determine which approach you will choose for
better cost/performance ratio? [2 pts]

The cost/performance of the scaled CMOS is .507x that of the FP hardware, or
1.97 times better. So we would choose the scaled CMOS technology.

044.1)85(.*2
1

)85.0/1(*85.0/1

2

_*/

/
_*/

/

_

_ 4
3

====

yelddiewaferdies

waferCost
yielddiewaferdies

waferCost

baseCost

scaledCost

50764.

26.1

073.2
25.1

044.1

_

_
_

_

==

FPePerformanc

FPCost
scaledPerforamce

scaledCost

Name:

Question 2. (Delay) [20 pts]

You have the following gates and flip-flops available for your design. Do not assume any
wiring capacitance in solving this problem. Try to minimize the overall delay.

2-input
NAND

2-input
OR

2-input
XOR

INV 2-input
MUX

Input Load 100fF 100fF 100fF 50fF 100fF

TPhl, TPlh 0.3ns 0.4ns 0.5ns 0.2ns 0.3ns

TPhlf, TPlhf 0.001ns/fF 0.001ns/fF 0.001ns/fF 0.001ns/fF 0.001ns/fF

D-FF

Set-up Time 2.0ns

Hold Time 1.0ns

Clock-to-Q Delay 1.0ns

TPhlf, TPlhf 0.001ns/fF

You are to design a circuit of the following logic block.

Clk ClkB

32-bit
Adder

32

32 32

A

S

Name:

(a) Design a 1-bit adder (full adder) using only the above gates and characterize it. Try to
minimize Cin -> Cout delay. [5 pts]

 When calculating input loads, be sure to take into account fan-in. For example, A
has an input load of 300 fF since it feeds three separate graphs.
 Input loads: A=300 fF B=300 fF Ci = 200 fF
 Output drives: Cout = .001 ns/fF S = .001 ns/fF

 TPhl = TPlh for all cases. Must show all paths to fully characterize.

 TP A,B È Cout = TP_OR + TPf_OR*Cin_NAND + TP_NAND + TPf_NAND*
Cin_NAND + TP_NAND
 TP A,B È Cout = .4 + .001*100 + .3 + .001*100 + .3
 TP A,B È Cout = 1.2 ns
 TP CiÈCout = .3 + .001*100 + .3 = 0.7 ns
 TP A,BÈS = .5 + .001*100 + .5 = 1.1 ns
 TP CiÈS = 0.5 ns

(b) Assuming no clock skew, what is the maximum clock frequency of the above block

built with a 32-bit ripple carry adder using the circuit you design in (a)? [5 pts]

 The longest path is not simply 32 times the carry chain path. Remember that the
first input comes from the input FF and goes into A or B, and that the last output is
through the 32nd sum bit to the output FF, not the 32nd carry bit.

 So the critical path is input FFÈA0 (or B0)ÈC0ÈC1È…ÈC30ÈS31Èoutput
FF.
 Critical path = TClk-Q + Tsu + TPf_FF*Cin_A + TP_AÈCout +
30*(TPf_Cout*Cin_Ci + TP_CiÈCout) + TPf_Cout*Cin_Ci + TP_CiÈS +
TPf_S*Cin_FF + Thold

 Critical path = 1.0 + 2.0 + .001*300 + 1.2 + 30*(.001*200 + .7) + .5 + .001*100 +
1.0
 Critical path = 33.3 ns

 Cycle Time = 1/Critical path = 30 MHz

Cout

Ci

A

B

S
Ci

A
B

(c) What is the maximum clock skew allowed for correct operation with any input on B?
[5 pts]

 TClk-Q + T_shortest path – Tskew > Thold

 The shortest path is from input FF to A or B to S to output FF, assuming no carries
are generated or propagated.
 T_shortest path = TPf_FF*Cin_A + TP_AÈS + TPf_S*Cin_FF
 = .001*300 + 1.1 + .001*100 =1.5 ns
1.0 ns + 1.5 ns – Tskew > 1.0 ns
Tskew > 1.5 ns

(d) Using full adders in (a) and muxes, sketch a carry select adder and estimate the

maximum clock frequency. Do not use more than 48 such full adders. Assume no
clock skew. [5 pts]

The critical path is calculated similarly to part b). We first calculate the delay from the
input FF to A0 to C1…to C15. Then C15 must drive 16 muxes, which will be a significant
delay, because it is a very big load. To optimize this, you might use inverters in parallel as
buffers, since they would have a better TPf. Finally, the outputs from the muxes go to the
output FF.
Critical path = TClk-Q + Tsu + TPf_FF*Cin_A + TP_AÈCout + 15*(TPf_Cout*Cin_Ci +
TP_CiÈCout) + TPf_Cout*16*Cin_mux + TP_mux + TPf_mux*Cin_FF + Thold.

Critical path = 1.0 + 2.0 + .001*300 + 1.2 + 15*(.001*200 + .7) + .001*16*100 + .3 +
.001*100 + 1.0
Critical Path = 21 ns
Cycle Time = 1/Critical Path = 47.6 MHz

By using inverters as buffers to drive the sixteen muxes we can reduce the critical path.
Note that we can use only one inverter stage, and have our select signal be inverted, and
just switch the inputs to the muxes, so that if C15 is one, it will be inverted but still select
the correct input to the mux. We will use 4 inverters in parallel. Without buffers, it took
1.6 ns to drive the muxes. With 4 inverters in parallel, this is reduced to .8 ns (including
the inverter delay, so that the .8 ns is cut off the critical path.

C1

32

32 32

32

16-bit adder 16-bit adder

16-bit adder

01

1

0

Name:

Question 3. (Floating-point) [10 pts]

(a) Add the two single precision FP numbers in IEEE format and represent the result in
IEEE format. Show all the calculation and intermediate result. Use IEEE standard
rounding method (nearest even in case of a tie) and make sure to include Guard, Round,
and Sticky bits in calculation. [6 pts]

0 10011000 00000000000000000000000
0 10000000 00000000000000000000001

The exponent of the top number is given as 100110002 –12710 = 152 – 127 = 2510

The exponent for the second number is 128 – 127 = 1.
This corresponds to:

1.000…00 x 225

 + 1.000…01 x 21

We then shift the bottom number to the right 24 places, so that the radix points line
up. As we shift, the sticky bit gets turned on, since the 1 that was originally the LSB
of the significand gets shifted out to the right. The one to the left of the radix point
will be shifted all the way out to the guard bit, one place to the right of the LSB of
the significand.

1.000…00 000 x 225

 + 0.000…00 101 x 225

The result is rounded up since the round bit corresponds to ½ and the sticky bit is on.
The sum is 1.00000000000000000000001 x 225 =

0 10011000 00000000000000000000001

(b) Without Sticky bit, what would have been the result and why? [4 pts]

The guard bit tells us we are at ½. The round bit is zero and there is no sticky bit, so
we must be at exactly ½. Since the LSB is zero, we would round down to the nearest
even. Our sum would be exactly 1.0 x 225, which is different from our result of part (a).

0 10011000 00000000000000000000000

Sticky bit
Round bit
Guard bit

Name:

Question 4. (Single Cycle Datapath) [20 pts]

What changes and additions are needed to the datapath to support the following
instructions? Make modifications on the single cycle datapath for MIPS from class. When
you add control signals, put new names. Set proper values on all control signals (you may
have to change exiting values and some are don’t cares). Use red pen.

(a) A new instruction, BEZAL (branch on register being zero and link), which saves PC+4
in R31 and jump to the target in PC-relative addressing mode on the register, Rs, being
zero (offset is with respect to PC+4).[10 pts]

BEZAL Rs, imm16

We need to add a component that checks if Reg[Ra] = 0. If it is, it produces the
control signal EQZ, which is used to choose the branch address for the next PC, and
to activate the write register. Another control signal PCtoReg writes PC+4 to the
register file. Other control signals are set to 0,1 and X accordingly.

32

ALUctr

Clk

busW

RegWr

32

32

busA

32
busB

55 5

Rw Ra Rb

32 32-bit
Registers

Rs

Rt

Rt

Rd
RegDst

E
xtender

M
ux

3216
imm16

ALUSrcExtOp

M
ux

MemtoReg

Clk

Data In
WrEn32 Adr

Data
Memory

MemWr

A
L

U

Equal

Instruction<31:0>

0

1

0

1

01

<
21:25>

<
16:20>

<
11:15>

<
0:15>

Imm16RdRtRs

=

im
m

16

A
dder

A
dder

P
C

Clk

00

M
ux

4

nPC_sel

P
C

 E
xt

Adr

Inst
Memory

sign ext

addrt+4

“31

2

PCtoReg

EQZ

=0

EQZ

=0

X

X

X

X

=0

EQZ

EQZ

EQZ

1 0

Name:

(b) An instruction, TAS (Test and Set), which loads memory to a register and stores 1 in
the same memory location. Memory is addressed with the same addressing mode as a
LOAD instruction. [10 pts]

TAS Rt, imm16(Rs)

We can do all reading and writing in the same cycle, since reads are simply
combinational logic, and writes happen on the falling edge of the clock. Control
signals are added to insure that the data from the memory is written to register Rt,
the write enable of the memory is on, and a “1” will be muxed into the write data of
the memory.

32

ALUctr

Clk

busW

RegWr

32

32

busA

32
busB

55 5

Rw Ra Rb

32 32-bit
Registers

Rs

Rt

Rt

Rd
RegDst

E
xtender

M
ux

3216
imm16

ALUSrcExtOp

M
ux

MemtoReg

Clk

Data In
WrEn32 Adr

Data
Memory

MemWr

A
L

U

Equal

Instruction<31:0>

0

1

0

1

01

<
21:25>

<
16:20>

<
11:15>

<
0:15>

Imm16RdRtRs

=

im
m

16

A
dder

A
dder

P
C

Clk

00

M
ux

4

nPC_sel

P
C

 E
xt

Adr

Inst
Memory

sign ext

addrt+4

Set

“1”

0
1

“1”

“1”“1”“1”

Name:

Question 5. (MIPS Assembly Language) Complete the optimized MIPS assembly
language program for the following C program. Assume that delayed branches are used.
Only one instruction per slot. Try to follow the register usage convention described in
COD appendix A. Add appropriate comments to explain your idea. [15 pts]

int fibonacci (int k)
{
if (k == 0 || k == 1) return (1);
return (fibonacci (k-1) + fibonacci (k-2));
}

fibonacci:
subu $sp,$sp,32
sw $31,24($sp)
sw $17,20($sp)
move $17,$4
sltu $2,$17,2 # check if k<2________________
bne $2,$0,$L2
sw $16,16($sp)____ # store saved register—will

 have result of last fibonacci
jal fibonacci
addu $4,$17,-1
move $16,$2 # (this moves result of fib

 into $16, to be saved later
jal fibonacci
addu $4,$17,-2______ # find fib(k-2).Remember this

 is in the delay slot of jal
j $L3
addu $2,$16,$2______ # $2 has fib(k-2), $16 has____

 fib(k-1), add them together,
and return as fib(k-1)+fib(k-2)

$L2:
li $2,0x00000001 # 1

$L3:
lw $31,24($sp)____ # restore return address ______
lw $17,20($sp)____ # restore saved registers_____
lw $16,16($sp)____ # ____”_____”______”__________
addui$sp,$sp,32_____ # restore stack pointer _______
j $31
.end fibonacci

 (end of Midterm #1)

