
 

Name: 1

Feb 21, 1996

 

University of California

College of Engineering

Computer Science Division -EECS

 

Sp 1996  D.E. Culler 

 

CS 152 Midterm I

 

Your Name:________SOLUTION_______________

ID Number:_______________________________________________________

Discussion Section:__________________________________________________

You may bring two pages of notes and you may use a calculator, but no book or computer. 
Please print you name clearly on the cover sheet and on every page. The point value of 
each question is indicated in brackets. There are a total of 120 points. You have 170 min-
utes. Show your work. Write neatly and be well organized. It never hurts to make it easy to 
grade.

Good luck.

 

Problem Possible Score

 

1 40

2 20

3 20

4 20

5 20

Total 120



 

Name: 2

Feb 21, 1996

 

Problem 1 (40 points)

1a [3] State the five major components of a computer.

 

Processor datapath

Processor Control

Memory

Input

Output

 

1b [5] State five major distinct issues that must be addressed in an instruction set architec-
ture.

 

programmable storage

data types and encodings

set of operations

instruction formats

number of operands

where besides memory can operands be located

how memory operands are speified (addressing modes)

 

1c [2] Define Little Endian.

 

word is addressed by the byte address of the least significant byte (least 
significant byte is at lowest address in the word.)

 

1d[3] Decode the following MIPS instruction using the opcode encoding table at the end 
of the exam (Fig A.18) 10001100111001110000000000000111. Give its RTL (register 
transfer language) meaning.

 

lw  $7, 7($7) R[7] <– mem(R[7] + 7)

 

1e [3] What is the value of 1000 1100 1110 0111 0000 0000 0000 0111 as a 32bit 2s com-
plement number?

 

number is negative so, comp+1=> 0111 0011 0001 1000 1111 1111 1111 1001

-(2^30 + 2^29 + 2^28 + 2^25 + 2^24 + 2^20 + 2^19 + 2^16 - 7) = 1931018233

 

1f [3] What is the value of 10001100111001110000000000000111 as a single-precision 
IEEE floating-point number?



 

Name: 3

Feb 21, 1996

 

-1.11001110000000000000111 x 2^(-102) or

 about -3.56 x 10^(-31)

 

1g. [2] DRAM memory chips increase in capacity by a factor of 16 every how many 
years?

 

4x per 3 years => 16x per 6 years

 

1h. [3] Under what conditions is CPI a valid metric of performance comparison?

 

Time = Instruction Count x CPI x Cycle Time, so

Same program, same instruction set, and same cycle time

 

1i. [4] State three different methods for evaluating branch conditions. Explain the advan-
tages and disadvantages of each.

 

conditions codes. condition is set implicitly when doing normal operations, e.g. arithmetic, so some 
explicit comparisons can be avoided. Introduces implicit dependences between instructions.

condition registers & compare instructions. Simple to implement, but tends to increase instruction 
count.

compare&branch instructions. Reduce the number of instructions, but difficult to implement and may 
impact cycle time.

MIPS uses compare&branch for only the simplest comparisons (EQ, <0, 

 

≥

 

0)

 

1j[4] What are the four basic addressing modes supported by the MIPS R3000 instruction 
set? State and give the RTL meaning of each. (Do not include the special cases that arise 
from setting one of the operands to zero.)

 

register-addressing: value is contained in a register specified in the instruction

base or displacement addressing : mem[R[rs] + sign_ext(Imm16)]

immediate addressing: value is contained in the instruction

PC-relative addressing: PC <- PC + sign_ext(Imm16)



 

Name: 4

Feb 21, 1996

 

1k[5]. Assume the NAND Gate has the following characteristics: Input load = 100fF, 
propagation delay low-to-high TPlh = 0.5ns, TPhl = 0.1ns, TPlhf=0.002 ns/fF, 
TPhlf=0.002ns/fF. Identify the critical path in the following cell and fully characterize it 
using the linear delay model

 

.

Input load is 100fF on A and B

TPlhf=0.002 ns/fF, TPhlf=0.002ns/fF

Fixed internal delay is a little wierd because output ends up being high, after a 
glitch in one case. The important part was understanding the calculation

TP

 

cell

 

 = (TP

 

nand

 

 + 3 * TPf

 

nand

 

) + (TP

 

nand

 

 + 1* TP

 

nand

 

f) + TP

 

nand

 

This gives 

TPlh = (0.5 + 0.6) + (0.1 + 0.2) + 0.5 = 1.9 (or 0, since no change on output)

TPhl = (0.1 + 0.6) + (0.5 + 0.2) + 0.1 = 1.5 (glitches, then settles)

 

1l[3] Give the definition of speedup due an enhancement.

 

Speedup with E = (Time without E) / (Time with E)

= (Performance with E) / (Performance without E)

A

B
Q



 

Name: 5

Feb 21, 1996

 

Problem 2 (20 points).

This problem looks at performance and cost in the real world. The Feb 20, 1996 issue of 
PC Magazine provides the following data in its “Pentium or Pro?” cover story. 
CPUMark

 

32 

 

and 

 

CPUMark

 

16

 

 

 

are indicators of performance (speed) similar to SPECMarks 
(bigger is better) for 32 and 16 bit programs

 

.

 

2a. [3] Assuming CPUmarks are indicative of performance on real programs on these 
machines, how much faster is the Pentium Pro on 32 bit code? Show your work.

(a) 0.63

(b) 0.98

(c) 1.02

(d) 1.58

2b. [3] Assuming CPUmarks are indicative of performance on real programs on these 
machines, how much faster is the Pentium Pro on 16bit code? Show your work.

(a) 0.63

(b) 0.98

(c) 1.02

(d) 1.58

2c. [2] How much faster in performance per dollar is the Pro on 32 and 16 bit code?

32bit:(430/7800) / ( 270/3750) = 0.76 times faster

16bit:(270/7800) / ( 276/3750) = 0.47 times faster

Pretty sad, isn’t it.

 

Pentium (P5) Pentium Pro (P6)

 

Clock Rate 150 MHz 150 MHz

Transistor Count 3.3 M 5.5 M

Ave. System Price $3,750 $7,800

CPUMark

 

32

 

273 430

CPUMark

 

16

 

276 270

 

Speedup = Performance Pro / Performance P5= 430/273

Speedup = Performance Pro / Performance P5= 270/276



 

Name: 6

Feb 21, 1996

 

2d. [5] Assuming that die area is proportional to the number of transistors for these 
designs, how much more expensive would you expect the Pro die to be? Show your work.

Hint: Here are some equations from the book that may help. 

 

α

 

 is typically 2.

(a) 1.7

(b) 2.8

(c) 3.6

(b) 4.6

2e. [7] Using the answers to 2a and 2b, what fraction of the total workload would have to 
be 32-bit code in order for the Pro to perform 1.2 times faster than the Pentium?

 

Assume x is the percentage of the program is 32bit.

1.2 = P5 execution time / P6 execution time

1.2 =

x = 0.483

so 48.3%.

dies wafer⁄ Π wafer diameter 2⁄×( ) 2

die area
--------------------------------------------------------------- Π wafer diameter×

2 die area×
-----------------------------------------------– test dies per wafer–=

die yield wafer yield 1 defects pr uinit area die area×
α

------------------------------------------------------------------------+ 
  α–

×=

1
1 x–( )
0.98

------------------ x
1.58
----------+ 

 
-------------------------------------------

 

To first order, cost increases as the cube of the Area.
Relative area is 1.7, so relative cost is expected to be
1.7^3



 

Name: 7

Feb 21, 1996

 

Problem 3. (20 points) Complete the skeleton of MIPS assembly language (with delayed 
branches) below for the following C function. (Underlines may not be exactly right.)

 

extern int f (int);

int foo(int *A, int n)
{
  int i = 0;
  int sum = 0;
  for (i = 0; i<n; i++) {

sum = sum + f(A[i+1]);
  }
  return(sum);
}

foo:
subu    $sp,$sp,40

        sw      $31,32($sp)     
        sw      $19,28($sp)     # save A in $19
        sw      $18,24($sp) # save n in $18
        sw      $17,20($sp) # i in $17
        sw      $16,16($sp) # sum in $16

mov $16, $0 ; sum = 0 (2 pts for initialization)
mov $17, $0 ; i = 0
 slt  $2, $17,$5 # i=0 < n (1 pt)

        beq  $2,$0,$L3       # delayed branch fall-through
mov $19, $4 # setup A (2 pts)
mov $18, $5 # setup n

$L7:                            # top of loop
addi $4, $17, 1 # i+1 (2 pts)
sll $4, $17, 2 # convert index to byte address (2 pts)
addi $4, $19, $4 # &A[i+1] (2 pts)
lw $4, 0($4) # fetch A[i+1] into argument register (2 pts)

        jal     f               # delayed jump and link
addu $16, $16, $2 # accumulate return value into sum (2 pts)
slt $2, $17, $18 # i < n (2 pts)

        bne _$2_,$0,_$L7_ # delayed branch to top of loop 
addi $17, $17, 1 # i++

$L3: # fall-through
mov $2, $16 # return sum (1 pt)
lw $31, 32($sp)
lw $19, 28($fp) (2 pts)
lw      $18,24($sp)
lw      $17,20($sp)
lw      $16,16($sp)

        j       $31             # delayed return jump
        addu    $sp,$sp,40
        .end    foo



 

Name: 8

Feb 21, 1996

 

Problem 4 (20 points):

The Single-Cycle processor developed in class below (which was very similar to the one 

in the book) supports the following instructions. (Note that, as in the virtual machine, the 
branch is not delayed.)  

Consider adding the following instructions to our subset: ADDIU, OR, AND, BLTZAL 
(branch on less than Zero and Link). On the following pages, write the register transfers 
for the new instructions. Sketch the modifications to the datapath and specify the control 
points for each of the new instructions.

 

op | rs | rt | rd | shamt | funct = MEM[ PC ]
op | rs | rt |   Imm16 =

inst Register Transfers

ADDU R[rd] <– R[rs] + R[rt]; PC <– PC + 4

SUBU R[rd] <– R[rs] – R[rt]; PC <– PC + 4

ORi R[rt] <– R[rs] + zero_ext(Imm16); PC <– PC + 4

LOAD R[rt] <– MEM[ R[rs] + sign_ext(Imm16)]; PC <– PC + 4

STORE MEM[ R[rs] + sign_ext(Imm16)] <– R[rs]; PC <– PC + 4

BEQ if ( R[rs] == R[rt] ) then PC <– PC + sign_ext(Imm16)] || 00 

else PC <– PC + 4

32

ALUctr

Clk

busW

RegWr

32

32

busA

32

busB

55 5

Rw Ra Rb

32 32-bit
Registers

Rs

Rt

Rt

Rd
RegDst

E
xtender

M
ux

3216
imm16

ALUSrcExtOp

M
ux

MemtoReg

Clk

Data In
WrEn32 Adr

Data
Memory

MemWr

A
L

U

Equal

Instruction<31:0>

0

1

0

1

01

<21:25>

<16:20>

<11:15>

<0:15>

Imm16RdRsRt

=

im
m

16

A
dder

A
dder

P
C

Clk

00M
ux

4

nPC_sel

P
C

 E
xt

Adr

Inst
Memory

0

1

3



 

Name: 9

Feb 21, 1996

 

Problem 4 (cont)

 

No changes to the datapath are required the the three arithmetic/logical instructions, 
except the ALU needs to support AND. There is already the capability to sign extend 
immediates and to operate on pairs of registers.

To support the BLTZAL we need to 

 

•

 

detect R[rs] < 0, this is just the sign bit of bus_A

 

•

 

provide a path from the PC+4 adder onto the register input bus (bus_w)

 

•

 

provide 31 as the destination register number.

 

op | rs | rt | rd | shamt | funct = MEM[ PC ]
op | rs | rt |   Imm16 =

inst Register Transfers

ADDIU R[rd] <– R[rs] + SignExt(Imm16) PC <– PC + 4

OR R[rd] <– R[rs] or R[rt]; PC <– PC + 4

AND R[rt] <– R[rs] and R[rt] PC <– PC + 4

BLTZAL R[31] <– PC+4;

if (R[rs] < 0) then PC <- PC + Sign_Ext(Im16)||00 else PC <– PC + 4

32

ALUctr

Clk

busW

RegWr

32

32

busA

32

busB

55 5

Rw Ra Rb

32 32-bit
Registers

Rs

Rt

Rt

Rd
RegDst

E
xtender

M
ux

3216
imm16

ALUSrcExtOp

M
ux

MemtoReg

Clk

Data In
WrEn32 Adr

Data
Memory

MemWr

A
L

U

Equal

Instruction<31:0>

0

1

0

1

01

<21:25>

<16:20>

<11:15>

<0:15>

Imm16RdRsRt

=

im
m

16

A
dder

A
dder

P
C

Clk

00M
ux

4

nPC_sel

P
C

 E
xt

Adr

Inst
Memory

0

1

3

31

2

LT

2

pc2reg



 

Name: 10

Feb 21, 1996

 

Problem 4 (cont)

 

TABLE 1. 

Ext ALUsrc ALUCtr MemWr Mem2Reg PC2Reg RegDst RegWr nPC

 

ADDIU sign 1 add 0 0 0 0 1 0

OR x 0 OR 0 0 0 1 1 0

AND x 0 AND 0 0 0 1 1 0

BLTZAL x x x x x 1 2 1 LT



 

Name: 11

Feb 21, 1996

 

Problem 5 (20 points)

5a [7] Write a MIPS subroutine to perform a unsigned 64-bit subtraction. The operands 
are passed in registers A1:A0 and A3:A2 with the MSW in the higher numbered register. 
The result should be returned in registers v1:v0 with the same convention. Explain on the 
reverse side why your code works.
__________________________________________________________________

/* v1:v0 = a1:a0 -a3:a2 */

/* 4 instructions/cycles */

sltu t0, a0, a2

subu v0, a0, a2

subu v1, a1, a3

subu v1, v1, t0

5b.[13] In class (and in the book) we developed an unsigned multiplier that required 32 
shift-and-add steps for a 32-bit multiply. We also developed a multi-bit shifter. Using 
adders, registers, and multiplexors, design a 32-bit multiply unit that skips over sequences 
of trailing zeros in the multiplier. Give the algorithm and the block diagram and explain 
how it works.

 

You could do this with any of the four multipliers that we discussed in class. You 
hang a piece of logic off the multiplier to determine the number of trailing zeros. 
(This is essentially like a carry-chain, but simpler.) If you used a barrel shifter the 
unary shift amount is exactly right, otherwise you need to do a unary-to-binary 
conversion. If the entire multiplier is zero (32 zeros) it is time to stop the algorithm. 
Otherwise, shift the multiplier right over the string of zeros and (logically) shift the 
product left by this amount. If you used the third version of the multiplier-design, 
this was just shifting the entire 64-bit product register right by the shift amount. 
Whenever there is a one in the lsb of the multiplier, do the usual add step.


