
CS152 Fall ’99 Midterm II Page 1

University of California, Berkeley

College of Engineering

Computer Science Division  EECS

Fall 1999

John Kubiatowicz

Midterm II
SOLUTIONS
November 17, 1999

CS152 Computer Architecture and Engineering

Your Name:

SID Number:

Discussion
Section:

Problem Possible Score

1 25

2 25

3 25

4 25

Total

CS152 Fall ’99 Midterm II Page 2

[This page left for π]

3.141592653589793238462643383279502884197169399375105820974944

CS152 Fall ’99 Midterm II Page 3

Problem 1: Memory Hierarchy
Problem 1a: Assume that we have a 32-bit processor (with 32-bit words) and that this processor
is byte-addressed (i.e. addresses specify bytes). Suppose that it has a 512-byte cache that is two-
way set-associative, has 4-word cache lines, and uses LRU replacement. Split the 32-bit address
into “tag”, “index”, and “cache-line offset” pieces. Which address bits comprise each piece?

tag: bits 31-8
index: bits 7-4
cache-line offset: bits 3-0

Problem 1b: How many sets does this cache have? Explain.

 4 bits in the index ⇒ 16 sets

Problem 1c: Draw a block diagram for this cache. Show a 32-bit address coming into the
diagram and a 32-bit data result and “Hit” signal coming out. Include, all of the comparators in
the system and any muxes as well. Include the data storage memories (indexed by the “Index”),
the tag matching logic, and any muxes. You can indicate RAM with a simple block, but make
sure to label address widths and data widths. Make sure to label the function of various blocks
and the width of any buses.

A
dd

re
ss

[7
:4

]

TAG<24bits>DATA<128bits>
0
1
2
3

13
14
15

V
al

id

TAG<24bits> DATA<128bits>
0
1
2
3

13
14
15

V
al

id

=? =?

A
dd

re
ss

[3
1:

8]

MUX
(2-1)

128 128

10

24

24

24

MUX
(4-1)

128

A
dd

re
ss

[3
:2

]

32

SEL

H
IT

24

CS152 Fall ’99 Midterm II Page 4

[This page left for scratch]

CS152 Fall ’99 Midterm II Page 5

Problem 1d: Below is a series of memory read references set to the cache from part (a). Assume
that the cache is initially empty and classify each memory references as a hit or a miss. Identify
each miss as either compulsory, conflict, or capacity. One example is shown. Hint: start by
splitting the address into components. Show your work.

 Address Hit/Miss? Miss Type?

 0x300 Miss Compulsory

 0x1BC Miss Compulsory

 0x206 Miss Compulsory

 0x109 Miss Compulsory

 0x308 Miss Conflict

 0x1A1 Miss Compulsory

 0x1B1 Hit 

 0x2AE Miss Compulsory

 0x3B2 Miss Compulsory

 0x10C Hit 

 0x205 Miss Conflict

 0x301 Miss Conflict

 0x3AE Miss Compulsory

 0x1A8 Miss Conflict

 0x3A1 Hit 

 0x1BA Hit 

Problem 1e: Calculate the miss rate and hit rate.

 Hit Rate = 25.0
16

4 =

 Miss Rate =1 – Hit Rate = 75.0
16

12 =

CS152 Fall ’99 Midterm II Page 6

[This page intentionally left blank]

CS152 Fall ’99 Midterm II Page 7

Problem 1f: You have a 500 MHz processor with 2-levels of cache, 1 level of DRAM, and a
DISK for virtual memory. Assume that it has a Harvard architecture (separate instruction and
data cache at level 1). Assume that the memory system has the following parameters:

Component Hit Time Miss Rate Block Size

First-Level
Cache

1 cycle
4% Data

1% Instructions
64 bytes

Second-Level
Cache

20 cycles +
1 cycle/64bits

2% 128 bytes

DRAM
100ns+

25ns/8 bytes
1% 16K bytes

DISK
50ms +

20ns/byte
0% 16K bytes

Finally, assume that there is a TLB that misses 0.1% of the time on data (doesn’t miss on
instructions) and which has a fill penalty of 40 cycles. What is the average memory access time
(AMAT) for Instructions? For Data (assume all reads)?

AMATDISK =(5×107ns) + (16384×20) =50327680ns/2ns-per-cycle = 25163840 cycles
AMATDRAM = (100ns+25ns×16)+ 0.01×AMATDISK = (500ns+503276.8ns)/2ns= 251888.4 cycles
AMATL2 = (20 + 8) + 0.02×AMATDRAM =5065.77cycles
AMATINST = (1+0.01×AMATL2)=51.66 cycles
AMATDATA = (1+0.04×AMATL2+0.001×40) = 203.67 cycles

Why are these so high? Because our miss-rate for the disk (1%) is so high. This computer
would technically be “thrashing”, i.e. spending all of its time moving pages to and from the disk.

Problem 1g: Suppose that we measure the following instruction mix for benchmark “X”:

Loads: 20%, Stores: 15%, Integer: 30%, Floating-Point: 15% Branches: 20%
Assume that we have a single-issue processor with a minimum CPI of 1.0. Assume that we have
a branch predictor that is correct 95% of the time, and that an incorrect prediction costs 3 cycles.
Finally, assume that data hazards cause an average penalty of 0.7 cycles for floating point
operations. Integer operations run at maximum throughput. What is the average CPI of
Benchmark X, including memory misses (from part g)?

 CPI = CPINORMAL+CPICompute-stalls+CPIMemory-stalls
 = 1 + (0.3×0 + 0.15×0.7 + 0.2×0.05×0.3) +(AMATINST+0.35×AMATDATA) =
 = 1 + .135 + (51.66 + 0.35×203.67) =124.08 cycles/instruction

CS152 Fall ’99 Midterm II Page 8

Problem #2: Superpipelining
Suppose that we have single-issue, in-order pipeline with one fetch stage, one decode stage,
multiple execution stages (which include memory access) and a singe write-back stage. Assume
that it has the following execution latencies (i.e. the number of stages that it takes to compute a
value): multf (5 cycles), addf (3 cycles), divf (2 cycles), integer ops (1 cycle). Assume full
bypassing and two cycles to perform memory accesses, i.e. loads and stores take a total of 3
cycles to execute (including address computation). Finally, branch conditions are computed by
the first execution stage (integer execution unit).

Problem 2a:
Assume that this pipeline consists of a single linear sequence of stages in which later stages
serve as no-ops for shorter operations. Draw each stage of the pipeline as a box (no internal
details) and name each of the stages. Describe what is computed in each stage and show all of
the bypass paths (as arrows between stages). Your goal is to design a pipeline which never stalls
unless a value is not ready. Label each of these arrows with the types of instructions that will
forward their results along these paths (i.e. use “M” for multf, “D” for divf, “A” for addf, “I” for
integer operations). [Hint: be careful to optimize for information feeding into store instructions!]

Stage:
 F Fetch next instruction
 D Decode stage
 EX1 Integer Ops
 Address compute (for Ld/St)
 First stage of: Addf,Multf,Divf
 EX2 First stage of: Ld/St.
 Last Stage of: Divf,
 Second stage of: Addf, Mulff
 EX3 Last stage of: Ld/St, Addf
 Third stage of: Multf
 EX4 Fourth stage of: Multf
 EX5 Last stage of: Multf
 W Writeback stage

Problem 2b:
How many extra instructions are required between each of these instruction combinations to
avoid stalls (i.e. assume that the second instruction uses a value from the first). Be careful!

Between a divf and an store: 0 Between a multf and an addf: 4
Between a load and a multf: 2 Between an addf and a divf: 2
Between two integer instructions: 0 Between an integer op and a store: 0

D Ex1 Ex2 Ex3 Ex4 Ex5F W

I

Ld,A

I,D,Ld,A
I,D,Ld,A

I,D,Ld,A,M

M

I,D

D

CS152 Fall ’99 Midterm II Page 9

Problem 2c:
How many branch delay slots does this machine have? Explain.

2 delay slots. By the time the branch decision is made in the execute stage, there are
already two instructions in the pipeline. Or, you could say that the two delay slots are
necessary to avoid a “backward-in-time” arrow:

 Branch: F D E M W
 Branch+1: F D E M W

 Branch+2: F D E M W
 Branch+3: F D E M W
Probem 2d:
Could branch prediction increase the performance of this pipeline? Why or why not?

Yes. If we expose two delay slots to the programmer or compiler, they have to be filled
either with useful instructions of NOPs. Unfortunately, it is hard enough to find one
useful instruction to put in a delay slot, much less two. With branch prediction, we
change the specification of the instruction set so that there are no branch delay slots from
the standpoint of the programmer/compiler. Then, we let the prediction hardware figure
out how to make use of those instruction slots. If branch prediction is good, then we can
do better than the compiler at “filling” the hardware slots.

Problem 2e:
In the 5-stage pipeline that we discussed in class, a load into a register followed by an immediate
store of that register to memory would not require any stalls, i.e. the following sequence could
run without stalls:
 lw r4, 0(r2)
 sw r4, 0(r3)
Explain why this was true for the 5-stage pipeline.

Both loads and stores happen in the memory stage, so the forwarding of information can
be forward in time:

 Load: F D E M W
 Store: F D E M W

Problem 2f:
Is this still true for the superpipelined processor? Explain.

No. Because there are now two memory stages, hence we need to insert one extra
instruction so that we can forward from the end of the load (in stage E3) to the data
portion of the store (E2):

 Load: F D E1 E2 E3 E4 E5 W
 Random Inst: F D E1 E2 E3 E4 E5 W

 Store: F D E1 E2 E3 E4 E5 W

Delay-Slot Instructions

CS152 Fall ’99 Midterm II Page 10

Problem #3: Fixing the loops

For this problem, assume that we have a superpipelined architecture like that in problem (2) with
the following use latencies (these are not the right answers for problem #2b!):
 Between a multf and an addf: 3 insts Between a load and a multf/divf: 2 insts
 Between an addf and a divf: 1 insts Between a divf and a store: 7 insts
 Between an int op and a store: 0 insts Number of branch delay slots: 1 insts

Consider the following loop which performs a restricted rotation and projection operation. The
array based at register r10 contains pairs of double-precision (64-bit) values which represent x,z
coordinates. The array based at register r20 receives a projected coordinate along the observer’s
horizontal direction:

loop: ldf $F20, 0($r10)
 multf $F6, $F20, $F1
 addf $F12, $F6, $F2
 ldf $F10, 8($r10)
 divf $F13, $F12, $F10
 stf 0($r20), $F13
 addi $r10, $r10,#16
 addi $r20, $r20, #8
 subi $r1, $r1, #1
 bne $r1, $zero, loop
 nop

Problem 3a: How many cycles does this loop take per iteration? Indicate stalls in the above
code by labeling each of them with a number of cycles of stall:

 11 instructions + 14 stalls = 25 cycles/iteration

Problem 3b: Reschedule this code to run with as few cycles per iteration as possible. Do not
unroll it or software pipeline it. How many cycles do you get per iteration of the loop now?

loop: ldf $F20, 0($r10)
 ldf $F10, 8($r10)
 multf $F6, $F20, $F1
 addf $F12, $F6, $F2
 addi $r10, $r10, #16
 divf $F13, $F12, $F10
 addi $r20, $r20, #8
 subi $r1, $r1, #1
 bne $r1, $zero, loop
 stf -8($r20), $F13

There are many ways to rearrange/pipeline this code; one is shown above. Note that all of the
optimal ones will result in 8 stalls. So:

 10 instructions + 8 stalls = 18 cycles/iteration.

CS152 Fall ’99 Midterm II Page 11

Problem 3c: Unroll the loop once and schedule it to run with as few cycles as possible per
iteration of the original loop. How many cycles do you get per iteration now?

loop: ldf $F20, 0($r10) Total = (16+4)/2 =10 cycles/iter
 ldf $F10, 8($r10)
 ldf $F22, 16($r10)
 multf $F6, $F20, $F1
 ldf $F12, 24($r10)
 multf $F7, $F22, $F1
 addf $F12, $F6, $F2
 divf $F13, $F12, $F10
 addf $F16, $F7, $F2
 divf $F14, $F16, $F12
 addi $r10, $r10, #32
 addi $r20, $r20, #16
 subi $r1, $r1, #2
 stf -16($r20), $F13
 bne $r1, $zero, loop
 stf -8($r20), $F14

Problem 3d: Your loop in (3c) will not run without stalls. Without going to the trouble to unroll
further, what is the minimum number of times that you would have to unroll this loop to avoid
stalls? Explain. How many cycles would you get per iteration then?

If we have ≥ 4 iterations, we can groups all the loads together, followed by the multiplies, adds, divides,
integers, and stores. There will be no stalls except for the stores. Unfortunately, 4 iterations is not quite
enough to avoid all stalls, since the first store will stall for one cycle: ..DDDDIIISSSBS has 6
instructions between loads and stores. Thus, we need 5 iterations. Cycles: (6×5+4)/5=6.8cycles/iteration.

Problem 3e: Software pipeline the original loop to avoid stalls. Overlap 5 different iterations.
What is the average number of cycles per iteration? Your code should have no more than one
copy of the original instructions. Ignore startup and exit code.

loop: stf 0($r20), $F13
 divf $F13, $F12, $F10
 ldf $F10, 40($r10)
 addf $F12, $F6, $F2
 multf $F6, $F20, $F1
 ldf $F20, 64($r10)
 addi $r10, $r10, #16
 subi $r1, $r1, #1
 bne $r1, $zero, loop
 addi $r20, $r20, #8

This software pipelining problem had some subtleties with respect to the load placements that
some of you got, but which we didn’t enforce. In particular, the division into phases as shown
above. This division is enforced by data flow: phase-5 uses information generated in phase-4,
phase-4 from phase-3, etc. Note the careful generation of offsets as well. There are 2 iterations
between phase-1 and phase-3. In those two iterations, $r10 will have gained 32. Thus, to
correct for this, 64($r10) in phase-1 becomes 32($r10) in phase 3. Since the phase-3 load is 8
bytes further than that, the phase-3 offset is (32+8)($r10) = 40($10).

This runs without stalls. So, the cycles/iteration = 10.

Phase – 5 [1 instruction]

Phase – 3 [2 instructions]

Phase – 2 [1 instruction]

Phase – 1 [5 instructions]

Phase – 4 [1 instruction]

CS152 Fall ’99 Midterm II Page 12

Extra Credit (Problem 3X):
Assume that you have a Tomasulo architecture with functional units of the same execution
latency (number of cycles) as our deeply pipelined processor (be careful to adjust use latencies
to get number of execution cycles!). Assume that it issues one instruction per cycle and has an
unpipelined divider with a small number of reservation stations. Suppose the other functional
units are duplicated with many reservation stations and that there are many CDBs. . What is the
minimum number of divide reservation stations to achieve one instruction per cycle with the
optimized code of (3b)? Show your work. [hint: assume that the maximum issue rate is
sustained and look at the scheduling of a single iteration]

Answer: 2. The best way to understand this is to actually look at the timing of issue slots. First, we take
the use latencies from the beginning of this problem to extract the execution latencies (number of
execution stages) for the different operations:
 Load: 3 cycles, Add: 2 cycles, Multiply: 4 cycles, Divide: 9 cycles (careful here!)

Next, we show the timing of two+ iterations. We assume that the write back of one instruction and the
scheduling of a dependent instruction can occur in the same cycle (e.g. first ldf write back in cycle 5
means that dependent multf can start executing in cycle 6):

Name Issue
Start

Execution
End

Execution
Write
Back

ldf 1 2 4 5
ldf 2 3 5 6

multf 3 6 9 10
addf 4 11 12 13
addi 5 6 6 7
addi 6 7 7 8
subi 7 8 8 9
divf 8 14 22 23
bne 9 10 10 11
stf 10 24 26 27
ldf 11 12 14 15
ldf 12 13 15 16

multf 13 16 19 20
addf 14 21 23 24
addi 15 16 16 17
addi 16 17 17 18
subi 17 18 18 19
divf 18 25 33 34
bne 19 20 20 21
stf 20 35 37 38
ldf 21 22 23 24
ldf 22 23 24 25

multf 23 25 28 29
addf 24 30 32 33
addi 25 26 26 27
addi 26 27 27 28

Looking at this table, we see that we only need 2 reservation stations: one that is running, and
one waiting (the first divide is done in cycle 23, second divide overlaps, but third is issued until
cycle 28).

CS152 Fall ’99 Midterm II Page 13

Problem #4: Short Answers

Problem 4a: Give a simple definition of precise interrupts/exceptions:

A precise interrupt/exception is one which generates a single instruction in the instruction
stream for which all preceding instructions have completed and committed their results and for
which the designated instruction and all following instructions have not committed any results
(i.e. have not modified machine state).

Problem 4b: Explain how the presence of delayed branches complicates the description of a
precise exception point (Hint: what if there is a divide instruction in a delay slot that gets a
divide by zero exception)?

To describe the precise exception point, one needs more than one PC. For instance, if there is a single
delay slot, you need two PCs to describe the precise exception point (these are often called the PC and
nPC – for next PC). For a machine with n delay slots, you need n+1 PCs.

The reason that you need multiple instructions is to properly restart the pipeline. Consider the case in
which the precise exception point is at the delay slot instruction. In that case, the next instruction to
execute on return is clearly the delay slot instruction. However, the following instruction might either be
PC+4 or the target of the branch. Hence the need for the nPC.

Problem 4c: Explain the relationship between support for precise exceptions and support for
branch prediction. What hardware structure supports both of these mechanisms in a modern out-
of-order pipeline?

With out-of-order execution, precise exceptions require rolling back operations that have
already occurred after the exception point. Branch prediction requires the same support (to
rollback to the branch). The simplest structure to support rollback is the reorder buffer.

Problem 4d: Explain how pipelining can save power (and energy) for multimedia (streaming)
applications:

Multimedia applications consists of large numbers of independent operations. Hence, if one can
successfully pipeline the execution units, one can keep the overall clock rate constant and get the
“same” throughput (i.e. there are no stalls due to data hazards). After pipelining, there is less
logic between registers; as a result, we can lower the voltage without lowering the clock rate.
The net result is a power savings without a reduction in throughput.

Problem 4e: A PalmPilot is a portable computing device that holds calendars and addresses. It
has a micro-power mode that stops the clock and shuts down power to the processor when it is
idle. Suppose that it also recognized when the battery was getting low and ran the clock at lower
than normal speed during busy periods. Would this extend battery life? Why or why not?

No. It would not extend battery life. The reason is that slowing the clock down increases the
amount of time that the PalmPilot must be “on” in order to complete a given task. The way to
look at this is that the total number of transitions for a given operation (say looking up a name in
the address book) is constant. Total consumed energy is dependent on number of transitions and
voltage, neither of which have changed. If we changed the voltage as well, the answer would be
different (but we didn’t specify this – in fact the PalmPilot versions 1-5 don’t allow voltage
variation). Note that laptops change their clock when idle only because the software which runs
on them is not particularly intelligent (i.e. it consumes energy during idle loops!).

CS152 Fall ’99 Midterm II Page 14

Figure 1: A basic Tomasulo architecture

Problem 4f: The Tomasulo architecture (shown above) replaces a normal 5-stage pipeline with 4
stages: Fetch, Issue, Execute, and Writeback. One of its strengths is that it is able to Execute
instructions in a different order than the programmer originally specified. The simplest version
of this architecture also performs Writeback out-of-order as well. However, the Fetch and Issue
stages of the Tomasulo architecture are always handled in program order. Why?

We have to Fetch and Issue in order so that we can analyze the dataflow between instructions
and maintain the semantics of the program. Alternatively, you could think of the fact that
register renaming requires handling each instruction in order so that data will flow properly
between instructions which produce values and instructions that use these values.

Problem 4g: Pipelined architectures have three different types of data hazards with respect to
registers. Name and define them. For each type, give a short code sequence that illustrates the
hazard and describe how a Tomasulo architecture removes this hazard.

RAW: A “Read After Write” hazard occurs which an instruction produces a value which is used by a
later instruction. Tomasulo uses the CDB to forward data to correct this type of hazard.
Example:

 add $r1, $r2, $r3
 sub $r5, $r1, $r6

WAR: A “Write After Read” hazard occurs when a later instruction writes a register that needs to be
read by an earlier instruction. If data flows from the later to earlier instruction, we will get
incorrect operation. Tomasulo prevents this with register renaming. Example:

 sub $r5, $r1, $r6
 add $r1, $r2, $r3

WAW: A “Write After Write” hazard occurs when two instructions write a register. If these instructions
write out of order, then the register will have an incorrect value in it. Tomasulo prevents this
with register renaming. Example:

 add $r1, $r2, $r3
 sub $r1, $r4, $r5

�������

,QW�

,QW�

,QW�

��	
�����	���

)ORDW�
)ORDW�

��	
 ��
 ������������

�	

	���
�
����������

�	 ��

���������	�
�����

/RDG�
/RDG�

/RDG�
/RDG�
/RDG�
/RDG�

6WRUH�
6WRUH�

6WRUH�

CS152 Fall ’99 Midterm II Page 15

Problem 4h: What is register renaming, why is it desirable, and how is it accomplished in the
Tomasulo architecture?

During register renaming, the register names in instructions are changed (“renamed”) to either
a value or a pointer to a physical register slot in the machine. This is desirable because it
eliminates all WAR and WAW hazards.

It is accomplished in the Tomasulo architecture by maintaining an indirection table for every
register. When issuing an instruction, we:

1. Look up each operand in this table to get either an actual value for the register (if
ready), or a pointer to the reservation slot which will produce the value some time in
the future.

2. Update the register indirection slot for the destination register of the new instruction
to point at the reservation station where we are placing the new instruction.

Problem 4i: Why does a Tomasulo architecture need branch prediction?

Because the Tomasulo architecture gets its performance by executing instructions out of order.
Out-of-order execution depends on issuing enough instructions that we can find ones that are
not blocked awaiting results. However, in order to issue enough instructions, we need to scan
forward in the instruction stream. Since there is a branch every 5 or 6 instructions (typically), we
need to predict the direct of branches so that we can issue past them even before we know their
outcomes.

As the simplest example, consider the fact that, if we want to overlap multiple iterations of a
loop, we need to issue bast several instances of the loop branch. If that branch instruction
depends on the results of the loop (not uncommon), then we will not be able to issue past the
branch unless we make a guess of the direction that the branch is going to take.

