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Problem 1: Memory Hierarchy 
Problem 1a: Assume that we have a 32-bit processor (with 32-bit words) and that this processor 
is byte-addressed (i.e. addresses specify bytes).  Suppose that it has a 512-byte cache that is two-
way set-associative, has 4-word cache lines, and uses LRU replacement.  Split the 32-bit address 
into “tag”, “index”, and “cache-line offset” pieces. Which address bits comprise each piece? 

tag:   bits 31-8 
index:   bits 7-4 
cache-line offset:  bits 3-0 
 

Problem 1b: How many sets does this cache have?  Explain. 
 
 4 bits in the index ⇒  16 sets 
 
Problem 1c: Draw a block diagram for this cache.  Show a 32-bit address coming into the 
diagram and a 32-bit data result and “Hit” signal coming out. Include, all of the comparators in 
the system and any muxes as well.  Include the data storage memories (indexed by the “Index”), 
the tag matching logic, and any muxes.  You can indicate RAM  with a simple block, but make 
sure to label address widths and data widths. Make sure to label the function of various blocks 
and the width of any buses. 
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Problem 1d: Below is a series of memory read references set to the cache from part (a). Assume 
that the cache is initially empty and classify each memory references as a hit or a miss.  Identify 
each miss as either compulsory, conflict, or capacity.  One example is shown. Hint: start by 
splitting the address into components. Show your work. 

 
 Address Hit/Miss? Miss Type? 

 0x300 Miss Compulsory 

 0x1BC Miss Compulsory 

 0x206 Miss Compulsory 

 0x109 Miss Compulsory 

 0x308 Miss Conflict 

 0x1A1 Miss Compulsory 

 0x1B1 Hit   

 0x2AE Miss Compulsory 

 0x3B2 Miss Compulsory 

 0x10C Hit   

 0x205 Miss Conflict 

 0x301 Miss Conflict 

 0x3AE Miss Compulsory 

 0x1A8 Miss Conflict 

 0x3A1 Hit   

 0x1BA Hit   

    

 
Problem 1e: Calculate the miss rate and hit rate. 
 

 Hit Rate = 25.0
16

4 =  

 Miss Rate =1 – Hit Rate = 75.0
16

12 =  
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Problem 1f: You have a 500 MHz processor with 2-levels of cache, 1 level of DRAM, and a 
DISK for virtual memory.  Assume that it has a Harvard architecture (separate instruction and 
data cache at level 1). Assume that the memory system has the following parameters: 
 

Component Hit Time Miss Rate Block Size 

First-Level 
Cache 

1 cycle 
4% Data 

1% Instructions 
64 bytes 

Second-Level 
Cache 

20 cycles + 
1 cycle/64bits 

2% 128 bytes 

DRAM 
100ns+ 

25ns/8 bytes 
1% 16K bytes 

DISK 
50ms + 

20ns/byte 
0% 16K bytes 

 
Finally, assume that there is a TLB that misses 0.1% of the time on data (doesn’t miss on 
instructions) and which has a fill penalty of 40 cycles.  What is the average memory access time 
(AMAT) for Instructions?  For Data (assume all reads)? 
 
AMATDISK  =(5×107ns) + (16384×20) =50327680ns/2ns-per-cycle = 25163840 cycles 
AMATDRAM  = (100ns+25ns×16)+ 0.01×AMATDISK = (500ns+503276.8ns)/2ns= 251888.4 cycles 
AMATL2 = (20 + 8) + 0.02×AMATDRAM =5065.77cycles 
AMATINST = (1+0.01×AMATL2)=51.66 cycles 
AMATDATA = (1+0.04×AMATL2+0.001×40) = 203.67 cycles 
 
Why are these so high?  Because our miss-rate for the disk (1%) is so high.  This computer 
would technically be “thrashing”, i.e. spending all of its time moving pages to and from the disk. 
 
Problem 1g: Suppose that we measure the following instruction mix for benchmark “X”: 

Loads: 20%, Stores: 15%, Integer: 30%, Floating-Point: 15% Branches: 20% 
Assume that we have a single-issue processor with a minimum CPI of 1.0.  Assume that we have 
a branch predictor that is correct 95% of the time, and that an incorrect prediction costs 3 cycles.  
Finally, assume that data hazards cause an average penalty of 0.7 cycles for floating point 
operations. Integer operations run at maximum throughput.  What is the average CPI of 
Benchmark X, including memory misses (from part g)? 
 
 CPI = CPINORMAL+CPICompute-stalls+CPIMemory-stalls  
  = 1 + (0.3×0 + 0.15×0.7 + 0.2×0.05×0.3) +(AMATINST+0.35×AMATDATA) = 
  = 1 + .135 + (51.66 + 0.35×203.67) =124.08 cycles/instruction 
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Problem #2: Superpipelining 
Suppose that we have single-issue, in-order pipeline with one fetch stage, one decode stage, 
multiple execution stages (which include memory access) and a singe write-back stage.  Assume 
that it has the following execution latencies (i.e. the number of stages that it takes to compute a 
value): multf (5 cycles), addf (3 cycles), divf (2 cycles), integer ops (1 cycle).  Assume full 
bypassing and two cycles to perform memory accesses, i.e. loads and stores take a total of 3 
cycles to execute (including address computation). Finally, branch conditions are computed by 
the first execution stage (integer execution unit). 
 
Problem 2a: 
Assume that this pipeline consists of a single linear sequence of stages in which later stages 
serve as no-ops for shorter operations. Draw each stage of the pipeline as a box (no internal 
details) and name each of the stages.  Describe what is computed in each stage and show all of 
the bypass paths (as arrows between stages). Your goal is to design a pipeline which never stalls 
unless a value is not ready.  Label each of these arrows with the types of instructions that will 
forward their results along these paths (i.e. use “M” for multf, “D” for divf, “A” for addf, “I” for 
integer operations).  [Hint: be careful to optimize for information feeding into store instructions!] 
 
 
 
 
 

 
 
Stage:   
 F   Fetch next instruction 
 D Decode stage 
 EX1 Integer Ops 
  Address compute (for Ld/St) 
  First stage of: Addf,Multf,Divf 
 EX2 First stage of: Ld/St.   
  Last Stage of: Divf,  
  Second stage of: Addf, Mulff 
 EX3 Last stage of: Ld/St, Addf 
  Third stage of: Multf 
 EX4 Fourth stage of: Multf 
 EX5 Last stage of: Multf 
 W Writeback stage 

 
Problem 2b: 
How many extra instructions are required between each of these instruction combinations to 
avoid stalls (i.e. assume that the second instruction uses a value from the first).  Be careful! 
 

Between a divf and an store: 0 Between a multf and an addf: 4 
Between a load and a multf: 2 Between an addf and a divf: 2 
Between two integer instructions: 0 Between an integer op and a store: 0 

D Ex1 Ex2 Ex3 Ex4 Ex5F W

I

Ld,A

I,D,Ld,A
I,D,Ld,A

I,D,Ld,A,M

M

I,D

D



CS152 Fall ’99 Midterm II Page 9 

Problem 2c: 
How many branch delay slots does this machine have?  Explain. 
 

2 delay slots.  By the time the branch decision is made in the execute stage, there are 
already two instructions in the pipeline.  Or, you could say that the two delay slots are 
necessary to avoid a “backward-in-time” arrow: 

 Branch: F D E M W 
 Branch+1:   F D E M W 

 Branch+2:     F D E M W 
 Branch+3:       F D E M W 
Probem 2d: 
Could branch prediction increase the performance of this pipeline?  Why or why not?  
 

Yes.  If we expose two delay slots to the programmer or compiler, they have to be filled 
either with useful instructions of NOPs.  Unfortunately, it is hard enough to find one 
useful instruction to put in a delay slot, much less two.  With branch prediction, we 
change the specification of the instruction set so that there are no branch delay slots from 
the standpoint of the programmer/compiler.  Then, we let the prediction hardware figure 
out how to make use of those instruction slots. If branch prediction is good, then we can 
do better than the compiler at “filling” the hardware slots. 

Problem 2e: 
In the 5-stage pipeline that we discussed in class, a load into a register followed by an immediate 
store of that register to memory would not require any stalls, i.e. the following sequence could 
run without stalls: 
 lw r4, 0(r2) 
 sw r4, 0(r3) 
Explain why this was true for the 5-stage pipeline. 
 

Both loads and stores happen in the memory stage, so the forwarding of information can 
be forward in time: 

 Load: F D E M W 
 Store:   F D E M W 

Problem 2f: 
Is this still true for the superpipelined processor?  Explain. 
 

No.  Because there are now two memory stages, hence we need to insert one extra 
instruction so that we can forward from the end of the load (in stage E3) to the data 
portion of the store (E2): 

 

 Load: F D E1 E2 E3 E4 E5 W 
 Random Inst:   F D  E1 E2 E3 E4 E5 W 

 Store:     F D   E1 E2 E3 E4 E5 W 

Delay-Slot Instructions 



CS152 Fall ’99 Midterm II Page 10 

Problem #3: Fixing the loops 
 
For this problem, assume that we have a superpipelined architecture like that in problem (2) with 
the following use latencies (these are not the right answers for problem #2b!): 
 Between a multf and an addf: 3 insts Between a load and a multf/divf: 2 insts 
 Between an addf and a divf: 1 insts Between a divf and a store: 7 insts 
 Between an int op and a store: 0 insts Number of branch delay slots: 1 insts 

 
Consider the following loop which performs a restricted rotation and projection operation. The 
array based at register r10 contains pairs of double-precision (64-bit) values which represent x,z 
coordinates.   The array based at register r20 receives a projected coordinate along the observer’s 
horizontal direction: 

 
loop: ldf $F20, 0($r10) 
 multf $F6,  $F20, $F1 
 addf $F12, $F6, $F2 
 ldf $F10, 8($r10) 
 divf $F13, $F12, $F10 
 stf 0($r20), $F13 
 addi $r10, $r10,#16 
 addi $r20, $r20, #8 
 subi $r1, $r1, #1 
 bne $r1, $zero, loop 
   nop 
  

Problem 3a: How many cycles does this loop take per iteration?  Indicate stalls in the above 
code by labeling each of them with a number of cycles of stall: 
 
 11 instructions + 14 stalls = 25 cycles/iteration 
 
Problem 3b: Reschedule this code to run with as few cycles per iteration as possible.  Do not 
unroll it or software pipeline it.  How many cycles do you get per iteration of the loop now? 
 

loop: ldf $F20, 0($r10) 
 ldf $F10, 8($r10) 
 multf $F6, $F20, $F1 
 addf $F12, $F6, $F2 
 addi $r10, $r10, #16 
 divf $F13, $F12, $F10 
 addi $r20, $r20, #8 
 subi $r1, $r1, #1 
 bne $r1, $zero, loop 
   stf -8($r20), $F13 

 
There are many ways to rearrange/pipeline this code; one is shown above. Note that all of the 
optimal ones will result in 8 stalls.  So: 
  
 10 instructions + 8 stalls = 18 cycles/iteration.
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Problem 3c: Unroll the loop once and schedule it to run with as few cycles as possible per 
iteration of the original loop.  How many cycles do you get per iteration now? 

loop: ldf $F20, 0($r10) Total = (16+4)/2 =10 cycles/iter 
 ldf $F10, 8($r10) 
 ldf $F22, 16($r10) 
 multf $F6, $F20, $F1 
 ldf $F12, 24($r10) 
 multf $F7, $F22, $F1 
 addf $F12, $F6, $F2 
 divf $F13, $F12, $F10 
 addf $F16, $F7, $F2 
 divf $F14, $F16, $F12 
 addi $r10, $r10, #32 
 addi $r20, $r20, #16 
 subi $r1, $r1, #2 
 stf -16($r20), $F13 
 bne $r1, $zero, loop 
   stf -8($r20), $F14 

Problem 3d: Your loop in (3c) will not run without stalls.  Without going to the trouble to unroll 
further, what is the minimum number of times that you would have to unroll this loop to avoid 
stalls?  Explain.  How many cycles would you get per iteration then? 

If we have ≥ 4 iterations, we can groups all the loads together, followed by the multiplies, adds, divides, 
integers, and stores.  There will be no stalls except for the stores.  Unfortunately, 4 iterations is not quite 
enough to avoid all stalls, since the first store will stall for one cycle:  ..DDDDIIISSSBS  has 6 
instructions between loads and stores. Thus, we need 5 iterations.  Cycles: (6×5+4)/5=6.8cycles/iteration. 

Problem 3e: Software pipeline the original loop to avoid stalls.  Overlap 5 different iterations.  
What is the average number of cycles per iteration? Your code should have no more than one 
copy of the original instructions.  Ignore startup and exit code. 
 

loop: stf 0($r20), $F13  
 divf $F13, $F12, $F10 
 ldf $F10, 40($r10) 
 addf $F12, $F6, $F2 
 multf $F6, $F20, $F1 
 ldf $F20, 64($r10) 
 addi $r10, $r10, #16 
 subi $r1, $r1, #1 
 bne $r1, $zero, loop 
   addi $r20, $r20, #8 
 

This software pipelining problem had some subtleties with respect to the load placements that 
some of you got, but which we didn’t enforce.  In particular, the division into phases as shown 
above.  This division is enforced by data flow: phase-5 uses information generated in phase-4, 
phase-4 from phase-3, etc.  Note the careful generation of offsets as well.  There are 2 iterations 
between phase-1 and phase-3.  In those two iterations, $r10 will have gained 32.  Thus, to 
correct for this, 64($r10) in phase-1 becomes 32($r10) in phase 3. Since the phase-3 load is 8 
bytes further than that, the phase-3 offset is (32+8)($r10) = 40($10). 
 
This runs without stalls.  So, the cycles/iteration = 10. 

Phase – 5 [1 instruction] 

Phase – 3 [2 instructions] 

Phase – 2 [1 instruction] 

Phase – 1 [5 instructions] 

Phase – 4 [1 instruction] 



CS152 Fall ’99 Midterm II Page 12 

Extra Credit (Problem 3X): 
Assume that you have a Tomasulo architecture with functional units of the same execution 
latency (number of cycles) as our deeply pipelined processor (be careful to adjust use latencies 
to get number of execution cycles!). Assume that it issues one instruction per cycle and has an 
unpipelined divider with a small number of reservation stations.  Suppose the other functional 
units are duplicated with many reservation stations and that there are many CDBs. . What is the 
minimum number of divide reservation stations to achieve one instruction per cycle with the 
optimized code of (3b)?  Show your work. [hint: assume that the maximum issue rate is 
sustained and look at the scheduling of a single iteration] 

Answer: 2.  The best way to understand this is to actually look at the timing of issue slots.  First, we take 
the use latencies from the beginning of this problem to extract the execution latencies (number of 
execution stages) for the different operations: 
  Load: 3 cycles, Add: 2 cycles, Multiply: 4 cycles, Divide: 9 cycles (careful here!) 

Next, we show the timing of two+ iterations.  We assume that the write back of one instruction and the 
scheduling of a dependent instruction can occur in the same cycle (e.g. first ldf write back in cycle 5 
means that dependent multf can start executing in cycle 6): 

Name Issue 
Start 

Execution 
End 

Execution 
Write 
Back 

ldf 1 2 4 5 
ldf 2 3 5 6 

multf 3 6 9 10 
addf 4 11 12 13 
addi 5 6 6 7 
addi 6 7 7 8 
subi 7 8 8 9 
divf 8 14 22 23 
bne 9 10 10 11 
stf 10 24 26 27 
ldf 11 12 14 15 
ldf 12 13 15 16 

multf 13 16 19 20 
addf 14 21 23 24 
addi 15 16 16 17 
addi 16 17 17 18 
subi 17 18 18 19 
divf 18 25 33 34 
bne 19 20 20 21 
stf 20 35 37 38 
ldf 21 22 23 24 
ldf 22 23 24 25 

multf 23 25 28 29 
addf 24 30 32 33 
addi 25 26 26 27 
addi 26 27 27 28 

Looking at this table, we see that we only need 2 reservation stations: one that is running, and 
one waiting (the first divide is done in cycle 23, second divide overlaps, but third is issued until 
cycle 28).  
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Problem #4: Short Answers 
 
Problem 4a: Give a simple definition of precise interrupts/exceptions: 

A precise interrupt/exception is one which generates a single instruction in the instruction 
stream for which all preceding instructions have completed and committed their results and for 
which the designated instruction and all following instructions have not committed any results 
(i.e. have not modified machine state). 

Problem 4b: Explain how the presence of delayed branches complicates the description of a 
precise exception point (Hint: what if there is a divide instruction in a delay slot that gets a 
divide by zero exception)? 

To describe the precise exception point, one needs more than one PC.  For instance, if there is a single 
delay slot, you need two PCs to describe the precise exception point (these are often called the PC and 
nPC – for next PC). For a machine with n delay slots, you need n+1 PCs. 
 
The reason that you need multiple instructions is to properly restart the pipeline.  Consider the case in 
which the precise exception point is at the delay slot instruction. In that case, the next instruction to 
execute on return is clearly the delay slot instruction.  However, the following instruction might either be 
PC+4 or the target of the branch.  Hence the need for the nPC. 

Problem 4c: Explain the relationship between support for precise exceptions and support for 
branch prediction.  What hardware structure supports both of these mechanisms in a modern out-
of-order pipeline? 

With out-of-order execution, precise exceptions require rolling back operations that have 
already occurred after the exception point.  Branch prediction requires the same support (to 
rollback to the branch).  The simplest structure to support rollback is the reorder buffer. 

Problem 4d: Explain how pipelining can save power (and energy) for multimedia (streaming) 
applications: 

Multimedia applications consists of large numbers of independent operations.  Hence, if one can 
successfully pipeline the execution units, one can keep the overall clock rate constant and get the 
“same” throughput (i.e. there are no stalls due to data hazards).  After pipelining, there is less 
logic between registers; as a result, we can lower the voltage without lowering the clock rate.  
The net result is a power savings without a reduction in throughput. 

Problem 4e: A PalmPilot is a portable computing device that holds calendars and addresses.  It 
has a micro-power mode that stops the clock and shuts down power to the processor when it is 
idle.  Suppose that it also recognized when the battery was getting low and ran the clock at lower 
than normal speed during busy periods.  Would this extend battery life?  Why or why not? 

No.  It would not extend battery life.  The reason is that slowing the clock down increases the 
amount of time that the PalmPilot must be “on” in order to complete a given task.  The way to 
look at this is that the total number of transitions for a given operation (say looking up a name in 
the address book) is constant.  Total consumed energy is dependent on number of transitions and 
voltage, neither of which have changed.  If we changed the voltage as well, the answer would be 
different (but we didn’t specify this – in fact the PalmPilot versions 1-5 don’t allow voltage 
variation).  Note that laptops change their clock when idle only because the software which runs 
on them is not particularly intelligent (i.e. it consumes energy during idle loops!). 
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Figure 1: A basic Tomasulo architecture 

 
Problem 4f: The Tomasulo architecture (shown above) replaces a normal 5-stage pipeline with 4 
stages: Fetch, Issue, Execute, and Writeback.  One of its strengths is that it is able to Execute 
instructions in a different order than the programmer originally specified.  The simplest version 
of this architecture also performs Writeback out-of-order as well. However, the Fetch and Issue 
stages of the Tomasulo architecture are always handled in program order.  Why? 

We have to Fetch and Issue in order so that we can analyze the dataflow between instructions 
and maintain the semantics of the program.  Alternatively, you could think of the fact that 
register renaming requires handling each instruction in order so that data will flow properly 
between instructions which produce values and instructions that use these values. 

Problem 4g: Pipelined architectures have three different types of data hazards with respect to 
registers.  Name and define them.  For each type, give a short code sequence that illustrates the 
hazard and describe how a Tomasulo architecture removes this hazard.  

RAW:  A “Read After Write” hazard occurs which an instruction produces a value which is used by a 
later instruction.  Tomasulo uses the CDB to forward data to correct this type of hazard.  
Example: 

  add  $r1, $r2, $r3 
  sub $r5, $r1, $r6 

WAR: A “Write After Read” hazard occurs when a later instruction writes a register that needs to be 
read by an earlier instruction.  If data flows from the later to earlier instruction, we will get 
incorrect operation.  Tomasulo prevents this with register renaming. Example: 

  sub $r5, $r1, $r6 
  add $r1, $r2, $r3 

WAW: A “Write After Write” hazard occurs when two instructions write a register.  If these instructions 
write out of order, then the register will have an incorrect value in it.  Tomasulo prevents this 
with register renaming.  Example: 

  add $r1, $r2, $r3 
  sub $r1, $r4, $r5 
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Problem 4h: What is register renaming, why is it desirable, and how is it accomplished in the 
Tomasulo architecture? 
 
During register renaming, the register names in instructions are changed (“renamed”) to either 
a value or a pointer to a physical register slot in the machine. This is desirable because it 
eliminates all WAR and WAW hazards.  
 
It is accomplished in the Tomasulo architecture by maintaining an indirection table for every 
register.  When issuing an instruction, we: 
 

1. Look up each operand in this table to get either an actual value for the register (if 
ready), or a pointer to the reservation slot which will produce the value some time in 
the future. 

2. Update the register indirection slot for the destination register of the new instruction 
to point at the reservation station where we are placing the new instruction.  

 
Problem 4i: Why does a Tomasulo architecture need branch prediction? 
 
Because the Tomasulo architecture gets its performance by executing instructions out of order.  
Out-of-order execution depends on issuing enough instructions that we can find ones that are 
not blocked awaiting results.  However, in order to issue enough instructions, we need to scan 
forward in the instruction stream. Since there is a branch every 5 or 6 instructions (typically), we 
need to predict the direct of branches so that we can issue past them even before we know their 
outcomes.   
 
As the simplest example, consider the fact that, if we want to overlap multiple iterations of a 
loop, we need to issue bast several instances of the loop branch. If that branch instruction 
depends on the results of the loop (not uncommon), then we will not be able to issue past the 
branch unless we make a guess of the direction that the branch is going to take. 
 
 
 
 
 
 


