
1

University of California, Berkeley

College of Engineering

Computer Science Division EECS

Fall 1999 John Kubiatowicz

Midterm I
SOLUTIONS

October 6, 1999
CS152 Computer Architecture and Engineering

Your Name:

SID Number:

Discussion Section:

Problem Possible Score

1 20

2 15

3 35

4 30

Total

2

Problem 1: Performance

Problem 1a:
Name the three principle components of runtime that we discussed in class. How do they
combine to yield runtime?

Three components: Instruction Count, CPI, and Clock Period (or Rate)

Rate Clock
CPICountInst

period ClockCPI CountInst Runtime

×=

××=

Problem 1b:
What is Amdahl’s law for speedup? State as a formula which includes a factor for clock rate.

×

+−
==

oldFreq
newFreq

)1(

1

newTime
oldTime

Speedup

n
f

f

Where f = fraction of cycles sped up by optimization, n is the speedup.

Let us suppose that you have been running an important program on your company’s 300MHz
Acme II processor. By running a detailed simulator, you were able to collect the following
instruction mix and breakdown of costs for ezach instruction type:

Instruction Class Frequency (%) Cycles
Integer arithmetic and logical 40 1

Load 20 1
Store 10 2

Branches 20 3
Floating Point 10 5

Problem 1c:
What is the CPI and MIPS rating of the Acme II for this program?

CPI = .4(1)+.2(1)+.1(2)+.2(3)+.1(5) = 1.9
MIPS = 300/1.9 = 157.9

Problem 1d:
Suppose that you turn on the optimizer and it eliminates 30% of the arithmetic/logic instructions
(i.e. 12% of the total instructions), 30% of load instructions, and 20% of the floating-point
instructions. None of the other instructions are effected. What is the speedup of the optimized
program? (Be sure to state the formula that you are using for speedup and show your work)

The easiest way to compute this is to imagine that the original program had 100
instructions in it. Then, we can compute the number of cycles for the optimized
version of this program vs the original:

[] 17.1
62.1
9.1

)5(02.)1(06.)1(12.9.1100
9.1100

newTime
oldTime

==
−+−×

×==Speedup

3

Problem 1e:
What is the CPI and MIPS rating with the optimized version of the program? Compare your
result to that of (1c) and explain the difference:

Our optimizer removed .12+.06+.02 = .2 of our instructions. That means that we
need to rescale by 1/(1-0.2) = 1/0.8. You could imagine that the new table is:

Instruction Class Frequency (%) Cycles

Integer arithmetic and logical 35
8.0

)3.01(40 =−
1

Load 5.17
8.0

)3.01(20 =−
1

Store 5.12
8.0

10 = 2

Branches 25
8.0

20 = 3

Floating Point 10
8.0

)2.01(10 =−
5

Practically speaking, we have already done most of the required computation in the last
problem: CPI = 1.62/0.8= 2.025, MIPS= 300/2.025 = 148.1

These numbers seem to reflect worse performance (higher CPI / lower MIPS) since the
optimizer removed more fast instructions than slow ones. However, the program will run
faster, since it has only 80% of the instructions of the original.

Problem 1f:
Now, suppose that the Acme III has just been introduced with a faster clock rate (450 MHz).
However, in order to make the clock rate faster, the Acme engineers had to increase the CPI for
arithmetic, logical, and load instructions to 2 cycles and floating point instructions to 6 cycles.
What is the speedup of the Acme III over the Acme II on the unoptimized program? Show work

CPInew=0.6(2)+0.1(2)+0.2(3)+0.1(6) = 2.6

096.1
300
450

6.2
9.1

oldClock
newClock

newCPI
oldCPI

newTime
oldTime

=×=×==speedup

Problem 1g:
The engineers for Acme Inc are currently working on the Acme IV. Instead of increasing the
clock rate again, they are working on reducing the time for the floating-point instructions. Use
Amdahl’s law to show the maximum speedup that you could expect between the Acme III and
Acme IV on the unoptimized program (if the clock rates are both 450 MHz)?

Fraction of time devoted to float: 231.0
6.2
6.0 ==f

Max speedup = 3.1
6.0
6.2

)1(
1 ==
− f

4

Problem 2: Propagation Delay

Problem 2a:
Assume the following characteristics for NAND gates:

Input load: 150fF,
Internal delay: TPlh=0.2ns, TPhl=0.5ns,
Load-Dependent delay: TPlhf=.0020ns, TPhlf=.0021ns

For the circuit below, assume that inputs X0 – X5 are all set to 1. What are the propagation
delays from A to Y (for rising and falling-edges of Y)?

Because there are an even number of gates between A and Y, and because they are equally
loaded, both transitions have equal propagation delay:

TAY↑=TAY↓= () ()[]5.01500021.02.0150002.02 +×++×× =2.63 ns

Or, including a wire-delay estimate:

TAY↑=TAY↓= () ()[]5.03000021.02.0300002.02 +×++×× =3.86 ns

X0

A

X1

Y

Z

X2 X3 X4 X5

5

Problem 2b:
Suppose that we construct a new gate, XOR, as follows:

Compute the standard parameters for the linear delay models for this complex gate, assuming the
parameters given above for the NAND gate:

A Input Capacitance: 150+150=300 fF Load-dependent Delays:
B Input Capacitance: 300fF TPAYlhf: 0.0020 ns/fF

TPAYhlf: 0.0021 ns/fF
TPBYlhf: 0.0020 ns/fF
TPBYhlf: 0.0021 ns/fF

Internal delays for A⇒ Y, assuming that B is set to 1 (worst case delays):
TPAYlh: 0.2 + 0.002x300 + 0.5 + 0.0021x150 + 0.2 = 1.815 ns
TPAYhl: 0.5 + 0.0021x300 + 0.2 + 0.002x150 + 0.5 = 2.13ns

With estimated wire delay, these numbers would be: 2.73 and 3.06 respectively.

Problem 2c:
Now, suppose we use our new XOR gate in the circuit below. Let X0 – X5 be set to 1.
Compute the propagation delays from A ⇒ Y (both rising and falling edges):

This has the same symmetry as in part (a). So:

TAY↑=TAY↓= [] nsx 35.10)3000021(.13.2)300002(.815.12 =++×+×

or, with wire delay:

TAY↑=TAY↓= [] nsx 5.16)6000021(.06.3)600002(.73.22 =++×+×

A
B

Y

X0

A

X1

Y

Z

X2 X3 X4 X5

6

Problem 3: Square Root
Suppose that you have a 32-bit value, M, and you wish to find the closest integer, S, less than its

square-root, M . Let’s call S the “integer square root of M”. Since you are forcing S to be an
integer, you will end up with a remainder, R = M – S2. In this problem, we will come up with an
iterative mechanism to compute S one bit at a time.

Let us suppose that we have an estimate, Si, for the square root of M. We will assume that Si is
less than the desired value S, i.e. Si ≤ S. Next, assume that we add a small increment to this
estimate to make a better estimate, Si+1. Call this increment Ni+1:

Si+1 = (Si + Ni+1) ≤ S

Now, the remainder after the first estimate is: Ri = M – Si
2,

while after the second estimate is: Ri+1 = M – Si+1
2

= M – (Si+Ni+1)
2

= M – Si
2 – Ni+1 × (2 × S + Ni+1)

So, each time we pass through the algorithm, we subtract the following from the remainder:
Ri – Ri+1 = Ni+1 × (2×Si + Ni+1)

In binary, the increment values (the N’s) are single bits. Thus, each iteration through the
algorithm, we multiply the previous estimate by 2, add in the new bit (Ni+1), then shift by the
number of zeros in Ni+1 before subtracting from our remainder. This is very much like a divide
in which the divisor keeps changing. For example, consider finding the 4-bit square root of 118:

Starting: M= R0= 01110110 and S0 = 0000
Try: N1 = 1000 - 1000 ⇐ (2×S0+1000)×1000

R1= 00110110 ⇒ S1=S0+1000 = 1000
Try: N2 = 0100 - 10100 ⇐ (2×S1+0100)×0100

Result < 0 ⇒ S2=S1 = 1000
R2= 00110110 (unchanged)

Try: N3 = 0010 - 10010 ⇐ (2×S2+0010)×0010
R3= 00010010 ⇒ S3=S2+0010 = 1010

Try: N4 = 0001 - 10101 ⇐ (2×S2+0001)×0001
Result < 0 ⇒ S4=S3 = 1010
R4= 00010010 (unchanged)

Final result: 201110110 = 10102 with 100102 remainder

or: 118 = 10 with 18 remainder!

7

Problem 3a:
The above example showed unsigned M. Is it easy extend the algorithm for a signed M?

Yes: Since it doesn’t make sense to take the square root of a negative number, we simply
need to cause a “bad operand” fault if the sign bit of M is set.

Problem 3b:
From this point on, assume M is unsigned. For a 64-bit, unsigned-value M, what is the largest
possible integer square-root, Smax? How many bits would it take to represent? Explain without
using a calculator. (hint: Start by finding the smallest integer that is bigger than Smax).

First, note that 232×232 = 264 = Mmax +1. So, Smax < 232. Further, we know that:

(232 – 1)2 < (232)2 = Mmax+1 ⇒ (232 – 1)2 ≤ Mmax

Thus, we can conclude: Smax = (232 – 1)

This takes 32 bits to represent.

Problem 3c:
Also for a 64-bit unsigned-value M, what is the largest possible remainder, Rmax? How many
bits would it take to represent? Explain without using a calculator. (Use the same hint as
above).

First, note that the spaces between successive squares keeps increasing:

1, 4, 9, 16, 25, 36, 49, ...

This means that the maximum remainder would be between Smax
2

 and (Smax+1)2=Mmax+1

Rmax = (Mmax – Smax
2) = (Smax+1)2 – 1 – Smax

2 = Smax
2 + 2Smax + 1 – 1 – Smax

2 = 2Smax

Thus, Rmax= 2 (232 – 1)

This would take 33 bits to represent.

8

Here is pseudo-code for a square root algorithm. Assume that the input value of M has been
restricted so that Smax is no more than 31 bits in size and Rmax is no more than 32 bits in size. Let
Result and Remain be 32-bit global values which will store the square root and remainder
respectively. Inputs Mhi and Mlow are 32-bit arguments that give the upper and lower 32-bits of
the input. This code is modeled after version 3 of the divider from class:

isqrt(Mlow,Mhi) ⇒ (Result, Remainder)
{ /* All temporaries are 32-bit values */

int nextbit, temp, topbit, lowerbits;

/* missing initialization instructions */

while (nextbit > 0) {
ROL96(topbits,Remainder,lowerbits);

/* Above restrictions on M ensure temp only 32 bits. */
temp = (2 * Result) | nextbit;
if (topbits > 0 || Remainder ≥ temp) {

Result = Result | nextbit;
SUBcarry(topbits, Remainder, temp);

}
nextbit = nextbit >> 1;

}
}

The ROL96(hi,low,extra) pseudo-instruction takes three 32-bit registers and treats them as
a combined 96-bit register. It shifts the combined value left by one position, inserting a zero at
the far right (of the extra register).

The SUBcarry(hi,low,subvalue) pseudo-instruction takes three 32-bit registers. It
treats the first two as a combined 64-bit register. It subtracts the 32-bit subvalue from this 64-
bit register.

Problem 3d:
The pseudo-code is missing some initialization instructions. What should be there?
(hint: look at the example square root again and try to figure out what the various arguments to
ROL96 must be. Also, make sure that every variable has an initial value!):

nextbit = 231

topbits = 0
Remainder = Mhi Initialization for the 96 bit shift register
lowerbits = Mlow

Result = 0

9

Problem 3e:
Assume that you have a MIPS processor that is missing the isqrt() instruction. Implement
isqrt()as a procedure. Assume that Mlow and Mhigh are in the $a0 and $a1 registers
respectively, and that the Result and Remain values are returned in registers $v0 and $v1
respectively. You can use ROL96 and SUBcarry pseudo-instructions, but don’t use any other
pseudo-instructions. Make sure to adhere to all MIPS calling conventions!

In the following solution, we assume that there is no branch delay slot.

isqrt: lui $t0, 0x8000 ; Initialize nextbit
ori $t1, $r0, 0 ; Initialize topbits
ori $v1, $a1, 0 ; Initialize Remaider
ori $t2, $a0, 0 ; Initialize lowerbits
ori $v0, $r0, 0 ; Initialize Result

loop: ROL96 $t1,$v1,$t2
add $t3, $v0, $v0
or $t3, $t3, $t0
bne $t1, $r0, doit ; topbits ≠ 0, go for it
sltu $t4, $v1, $t3 ; Check: Remainder < temp?
bne $t4, $r0, endloop ; Yup, skip

doit: ori $v0, $v0, $t1 ; Add in bit to Result
SUBcarry$t1, $v1, $t3 ; Calculate new remainder

endloop: srl $t3, $t3, 1 ; New value of nextbit
bne $t3, $r0, loop
jr $ra ; Done, return with result

10

Problem 3f:
Implement the ROL96($t0,$t1,$t2) pseudo-instruction in 7 MIPS instructions. Assume that $t0,
$t1, and $t2 are the three input registers (with $t0 the most significant).
(hint: what happens if you use signed slt on unsigned numbers?)

 Soln: We are going to use the assembler register $at as a temp to hold the MSBs

slt $at, $t1, $r0 ; Get top bit of $t1
sll $t0, $t0, 1
or $t0, $at, $t0
slt $at, $t2, $r0 ; Get top bit of $t2
sll $t1, $t1, 1
or $t0, $at, $t1
sll $t2, $t2, 1

Problem 3g:
Implement the SUBcarry($t0,$t1,$t2) pseudo-instruction in 3 MIPS instructions.

 Soln: Compute the carry out and put it in $at. Be careful to use sltu!

sltu $at, $t1, $t2
sub $t1, $t1, $t2
sub $t0, $t0, $t3

Problem 3h:
What is the maximum “CPI” of your isqrt() procedure? (i.e. what is the total number of
cycles to perform an isqrt)? Assume that each real MIPS instruction takes 1 cycle, and pseudo-
instructions ROL96 and SUBcarry take 7 and 3 cycles respectively:

Number of cycles in inner loop = 18
Start up = 5 cycles
Ending = 1 cycle

CPI for this “instruction” = 5 + 18x32 + 1 = 582
`

11

EXTRA CREDIT [5pts => Save until last!]:
Draw the data path for a hardware square-root engine that does 64-bit square-roots. Explain
what you are doing and how this will be controlled.

The following data path will do the trick. Notice that we have essentially duplicated the
algorithm in hardware. A little thinking will verify that you never need more than 34-bits inthe
remainder register to handle the maximum temporary results.

34 bits (Remainder + topbits) 32 bits (lowerbits)

34-bit
subtractor

34
34

34

32 bits (Quotient)
5=>32

Decoder

<<1

33-bit
Or

32

0

3333

0

33

32-bit
Or

32
5-bit

coumter

Controller

Load1/Load2/Shift

Load/
Shift

Set 31/

Decrem
ent

zero?

Negative?

C
lear/

Load

00||Mhi Mlo

12

Problem 4: New instructions for a multi-cycle data path

The Multi-Cycle datapath developed in class and the book is shown above. In class, we
developed an assembly language for microcode. It is included here for reference:

Field Name Values For Field Function of Field
Add ALU Adds
Sub ALU subtracts
Func ALU does function code (Inst[5:0])

ALU

Or ALU does logical OR
PC PC ⇒ 1st ALU input

SRC1
rs R[rs] ⇒ 1st ALU input
4 4 ⇒ 2nd ALU input
rt R[rt] ⇒ 2nd ALU input

Extend sign ext imm16 (Inst[15:0]) ⇒ 2nd ALU input
Extend0 zero ext imm16 (Inst[15:0]) ⇒ 2nd ALU input

SRC2

ExtShft 2nd ALU input = sign extended imm16 << 2
rd-ALU ALUout ⇒ R[rd]
rt-ALU ALUout ⇒ R[rt]ALU Dest
rt-Mem Mem input ⇒ R[rt]
Read-PC Read Memory using the PC for the address
Read-ALU Read Memory using the ALUout register for the addressMemory
Write-ALU Write Memory using the ALUout register for the address

MemReg IR Mem input ⇒ IR
ALU ALU value ⇒ PCibm

PC Write
ALUoutCond If ALU Zero is true, then ALUout ⇒ PC

Seq Go to next sequential microinstruction
Fetch Go to the first microinstructionSequence

Dispatch Dispatch using ROM

Ideal
Memory
WrAdr
Din

RAdr

32

32

32
Dout

MemWr

32
A

L
U

32
32

ALUOp

ALU
Control

32

IRWr

Instruction R
eg

32

Reg File

Ra

Rw

busW

Rb
5

5

32
busA

32busB

RegWr

Rs

Rt

M
ux

0

1

Rt

Rd

PCWr

ALUSelA

Mux 01

RegDst

M
ux

0

1

32

PC

MemtoReg

Extend

ExtOp

M
ux

0

1
32

0

1

2
3

4

16Imm 32

<< 2

ALUSelB

M
ux

1

0

32

Zero

Zero
PCWrCond PCSrc

32

IorD

M
em

 D
ata R

eg

A
L

U
 O

ut

B

A

13

In class, we made our multicycle machine support the following six MIPS instructions:

op | rs | rt | rd | shamt | funct = MEM[PC]
op | rs | rt | Imm16 = MEM[PC]

INST Register Transfers
ADDU R[rd] ← R[rs] + R[rt]; PC ← PC + 4
SUBU R[rd] ← R[rs] - R[rt]; PC ← PC + 4
ORI R[rt] ← R[rs] + zero_ext(Imm16); PC ← PC + 4
LW R[rt] ← MEM[R[rs] + sign_ext(Imm16)]; PC ← PC + 4
SW MEM[R[rs] + sign_ext(Imm16)] ← R[rs]; PC ← PC + 4
BEQ if (R[rs] == R[rt]) then PC ← PC + 4 + sign_ext(Imm16) || 00

else PC ← PC + 4

For your reference, here is the microcode for two of the 6 MIPS instructions:

Label ALU SRC1 SRC2 ALUDest Memory MemReg PCWrite Sequence
Fetch Add PC 4 ReadPC IR ALU Seq
Dispatch Add PC ExtShft Dispatch

RType Func rs rt Seq
rd-ALU Fetch

BEQ Sub rs rt ALUoutCond Fetch

In this problem, we are going to add three new instructions to this data path:

lui $rd, <const> ⇒ R[rd] ← Imm16 || 0000000000000000
multacc $rd, $rs, $rt ⇒ R[rd] ← (R[rs]×R[rt]) + R[rd]
bltual $rs, $rt <offset> ⇒ if (R[rs] < R[rt]) then

PC ← PC + 4 + sign_ext(Imm16) || 00
R[31] ← PC + 4

else
PC ← PC + 4

1. The lui instruction is familiar to you from the normal MIPS instruction set. It places the 16 bit
immediate field into the upper 16 bits of R[rd], filling the lower 16 bits of R[rd] with zeros.
Important note: the encoding for the lui instruction has a zero in the rs field.

2. The multacc instruction (multiply-accumulate) uses register R[rd] as both a source and a
destination register. It multiplies the values R[rs] and R[rt], adds the result to register R[rd], then
places the result back into register R[rd]. Assume that this instruction does not overflow.

3. The bltual instruction (branch on less than unsigned and link) checks to see if R[rs] is less
than R[rt]. If it is, it will save the PC in $ra (like jal), then branch to the offset.

14

Problem 4a:
How wide are microinstructions in the original datapath (answer in bits and show some work!)?

15 = 2+1+3+2+2+1+2+2

The trickiest part of this computation is the PC Write field. We have to remember to represent
the “do nothing” option, which means that there are actually three different values for the PC
Write field.

Problem 4b:
Draw a block diagram of a microcontroller for the unmodified datapath. Include sequencing
hardware, the dispatch ROM, the microcode ROM, and decode blocks to turn the fields of the
microcode into control signals. Make sure to show all of the control signals coming from
somewhere. (hint: The PCWr, PCWrCond, and PCSrc signals must come out of a block
connected to thePCWrite field of the microinstruction).

Problem 4c:
Come up with a binary encoding for the ALUDest field of the microinstruction (rd-ALU,
rt-ALU, rt-Mem, or blank). Construct logic which maps this binary field to the
appropriate control signals from problem 4b.

Name Code
rt-ALU 00
rt-mem 01
rd-ALU 10
blank 11

ROM

MUX

microPC+1

Dispatch
ROM

0

15

2 A
LUFunct

A
LU

op

S
R

C
1

S
R

C
2

A
LU

D
est

M
em

ory

M
em

R
eg

P
cW

rite

A
LU

S
elA

E
xtO

p

A
LU

S
elB

R
egD

est

M
em

toR
eg

R
egW

r

IorD

M
em

W
r

IrW
r

P
C

W
r

P
C

W
rC

ond

P
C

S
rc

6

2 1 3 2 2 1 2

MemToReg

RegDest

I0

RegWr
I1
I0

I1

15

Problem 4d:
Describe/sketch the modifications needed to the datapath for the new instructions (lui,
multacc, and bltual). Assume that the original datapath had only enough functionality to
implement the original 6 instructions. Try to add as little additional hardware as possible. Make
sure that you are very clear about your changes.

lui: Enhance the extend box to support a “Shift left by
16” mode.

multacc:
1. Enhance the ALU to include multiplication.
2. Feed back ALUout register to ALUSelA mux
3. Place new mux at the input to the Rb input of

the register file to select between the Rt and
Rd fields of the instruction

bltual:
1. Enhance ALU to include a “NEG” output to

indicate that output is negative (note that it is not
enough to specify the sign bit of the result, since
we are dealing with unsigned numbers).

2. Feed PC into MemToReg mux
3. Enhance PC control with new signal (CondSel),

which selects either the “Zero” or “NEG” signals
to make a decision.

4. Enhance RegDst MUX to include the explicit
number “31” as a destination (see above)

5. Enhance the register write signal to include option
of only writing if the condition specified by
“CondSel” is true.

ExtendImmediate
16 32

ExtOp

2
M

U
X

ALUOut
PC

A reg

ALU
input A

A
LU

S
el

A

Reg File

Ra

M
U

X Rb

M
U

X Rw

Rs

Rd

Rt

Rd

Rt

R
E

G
D

est
B

S
rcS

el

31

WriteIt

RegWrCond
ActiveCond RegWr

MUX

M
em

D
at

a
P

C
A

LU
O

ut
busW

MemToReg

M
U

X

Zero

Neg

PcWrCond

ActiveCond

PcWr

PC Write
Enable

CondSel

16

Problem 4e:
Describe changes to the microinstruction assembly language for these new instructions. How
wide are your microinstructions now?

New Field: BSRC. Possible values: GetRT, GetRD, blank. GetRT and blank are equivalent

Addition to ALU field: Mul (Do a multiplication)
Addition to SRC1 field: ALUOut (Use ALUOut register value)
Addition to SRC2 field: Shift16 (Use value of immediate shifted left by 16)
Addition to ALUDest field: ra-PC-cond (Write PC to $ra if PC condition is true)
Addition to PCWrite: ALUNegBr (Update PC if ALU NEG output is true)

Need 1 new bit for BSRC, 1 additional bit for ALU field, 1 additional bit for SRC1, 0 additional
bits for SRC2 field, 1 additional bit for ALUDest, 0 additional bits for PCWrite. So, total = 19

Problem 4f:
Write complete microcode for the three new instructions. Include the Fetch and Dispatch
microinstructions. If any of the microcode for the original instructions must change, explain how
(Hint: since the original instructions did not use R[rd] as a register input, you must make sure
that your changes do not mess up the original instructions).

Label ALU BSRC SRC1 SRC2 ALUDest Memory MemReg PCWrite Sequence
Fetch Add PC 4 ReadPC IR ALU Seq
Dispatch Add GetRT PC ExtShft Dispatch

lui Add rs Shift16 Seq
rd-ALU Fetch

multacc Mult GetRD rs rt Seq
Add ALUOut rt Seq

rd-ALU Fetch
bltual Sub rs rt ra-PC-cond ALUNegBr Fetch

Note that we assert GetRT during the dispatch stage, so that the first post-dispatch cycle of every
instruction has the value of R[rt] in the “B” register (so to not mess up our other instructions).
Since there are only two options for the BSRC field, you could imagine that “blank” produces
this normal behavior. However, we have coded it explicitly in order to make our point.
Problem 4g:
What are the CPI values for each of the three new instructions?

lui: CPI = 4 (if you didn’t go through an “Add”, this could be as low as 3)
multacc: CPI = 5
bltual: CPI = 3

