CS-172 Final May 15, 1993

David Wolfe

Try to keep your answers succinct. The exam is CLOSED BOOK. All questions count equally. First, a few helpful theorems and definitions. Just because a theorem is mentioned, it may not be helpful on the exam.

Lemma: The Pumping Lemma:

If L is regular

then $(\exists n)(\forall z \in L \text{ such that } |z| \ge n)(\exists uvw \text{ such that } z = uvw \text{ and } |uv| \le n \text{ and } |v| \ge 1)(\forall i) : uv^i w \in L$

Lemma: The contrapositive of the *Pumping Lemma*:

If $(\forall n)(\exists z \in L \text{ such that } |z| \ge n)(\forall uvw \text{ such that } z = uvw \text{ and } |uv| \le n \text{ and } |v| \ge 1)(\exists i) : uv^i w \notin L$ then L is not regular.

Theorem: Rice's theorems: Let $L_{\mathcal{P}}$ be the set of machines with property \mathcal{P} . If \mathcal{P} is non-trivial, $L_{\mathcal{P}}$ is undecidable. Further, $L_{\mathcal{P}}$ is r.e. if and only if \mathcal{P} satisfies the following three conditions:

- 1. If $L \in \mathcal{P}$ and $L \subseteq L'$ for some r.e. L', then $L' \in \mathcal{P}$.
- 2. If L is an infinite language in \mathcal{P} , then there exists a finite subset of L in \mathcal{P} .
- 3. The set of finite languages in \mathcal{P} is enumerable.

3-SATISFIABILITY (3SAT)

INSTANCE: A boolean formula, F, which is an AND of clauses where each clause is an OR of 3 literals.

QUESTION: Is F satisfiable?

3-DIMENSIONAL MATCHING (3DM)

INSTANCE: A set $M \subset W \times X \times Y$, where |W| = |X| = |Y| = q are disjoint sets.

QUESTION: Does M contain a matching, $M' \subset M$, such that no two elements of M' agree in any coordinate.

VERTEX COVER (VC)

INSTANCE: A graph G and integer K

QUESTION: Is there a subset of K vertices which cover all the edges?

CLIQUE

INSTANCE: A graph G and integer K

QUESTION: Does the graph contain a clique (comletely connected subgraph) of K vertices?

HAMILTONIAN CIRCUIT (HC)

INSTANCE: A graph G

QUESTION: Is there a cycle through all the vertices of G

PARTITION

INSTANCE: A finite set A and a "size" $s(a) \in Z^+$ for each $a \in A$.

QUESTION: Is there a subset $A' \subset A$ such that

$$\sum_{a \in A'} s(a) = \sum_{a \in A - A'} s(a)$$

- 1. Prove or disprove the following languages are regular:
 - (a) $L_a = \{a^s b^t : s \ge t \ge 1\}.$
 - (b) $L_b = \{a^s b^t : t > s \ge 1\}$. For the proof, use set closure properties and your result about L_a . No credit for using the pumping lemma.
 - (c) $L_c = \{w : w \text{ contains the substring "0011"}\}$
- 2. Which of the following are r.e.? Give a proof. (Hint: Any reductions can be done from L_u by creating an M' from $\langle M, w \rangle$ which accepts either \emptyset or Σ^* depending on whether M(w) rejects or accepts.)
 - (a) $L_{3M} = \{\langle M_1, M_2, M_3 \rangle : \text{At least two of the machines accept the same language.} \}$
 - (b) $\overline{L_{3M}}$
 - (c) $L = \{\langle M \rangle : M(\epsilon) \text{ never moves past the } |Q|^{\text{th}} \text{ tape square}\}.$ (Q is the set of states of M.)
- 3. Of the following three problems, prove one is in NP, prove one in co-NP, and prove the third is in P.
 - (a) **INSTANCE:** Two graphs on the same vertex set G = (V, E) and H = (V, E').

QUESTION: Are G and H non-isomorphic?

(Note that it says "non-isomorphic" rather than "isomorphic".)

(b) **INSTANCE:** A boolean formula, F, on the 100 variables $\{x_1, \ldots, x_{100}\}$.

QUESTION: Is F unsatisfiable?

(c) **INSTANCE:** A binary number n > 1 in binary.

QUESTION: Is n composite? ("Composite" means "not prime").

4. Prove FEEDBACK VERTEX SET is NP-complete.

FEEDBACK VERTEX SET

INSTANCE: Directed graph G = (V, E) and integer K.

QUESTION: Is there a subset $V' \subset V$ such that $|V'| \leq K$ and every directed circuit in G includes at least one vertex from V'.

5. Prove HITTING STRING is NP-complete:

INSTANCE: An integer n and a set of strings $A \subset \{0,1,\#\}^n$.

QUESTION: Is there a string $x \in \{0,1\}^n$ such that for each string $a \in A$ there is some $i, 1 \le i \le n$, for which the i^{th} symbol of a and the i^{th} symbol of x are identical.

For example,

$$A = \{11\#0, 0\#\#\#, \#\#0\#, \#\#\#1, 0\#1\#\}$$

is a positive instance by choosing x = 0101.