
CS ��� � Spring ����
Computability and Complexity

Prelim �� Solutions

Solution �� The language A is context free� We call a word w such that w � wR a palindrome�

We build a CFG for palindromes based on a recursive de	nition of a palindrome� Note that �
 �


and � are palindromes� Moreover
 if w is palindromatic
 so are �w� and �w�
 and these are the
only ways that we can generate palindromes� Hence
 a CFG for A is

S � � j � j �
S � �S� j �S�

The language B is also context�free� A CFG for B is

S � �S� j �S� j D
D � �T� j �T�
T � �T j �T j �

Intuitively
 S generates strings with matched symbols
 or D
 and D generates strings whose 	rst

and last characters do not match �the nonterminal T generates the language �� � �
�
�

Solution �a� If q is dead
 then q is redundant� Suppose q is dead
 and let w be a word in L�M
�

Then
 the machine M has an accepting run on w that does not go through q �since q is dead

 and

we can duplicate this run on the machine M n q� On the other hand
 if M n q has an accepting run

on a word w
 this can again be duplicated in M 
 and moreover
 this run does not go through q�

However
 even if q is redundant
 q may not be dead� This may occur
 for example
 if M is

nondeterministic
 and has two runs on the same word� As an example
 consider an NFA M � We

construct the NFA M � which consists of two identical copies of M 
 with an additional initial state

that nondeterministically chooses to go to either the start state of the 	rst copy or the 	rst state

of the second copy� Then
 each state in M � �except the initial state
 is redundant
 but there are

states that are not dead�

Solution �b�

The dead�state problem is the emptiness problem in disguise�

�� DNFA is recursive� This problem can be reduced to graph reachability� �M� q
 � DNFA i� in

the transition graph
 there is no path from the start state to the state q�

�� DPDA is recursive� Given a PDA �that accepts on 	nal state
 and a state q
 make q the only

accepting state� Then run the algorithm for emptiness� If the language is empty
 then q is

dead
 and if q is dead
 the language is empty�

�� DTM is co�r�e� � guess a string w and simulate the machine M until it hits the state q� It is

not recursive
 though� We reduce from TMEmptiness� Given a Turing machine M 
 one can

construct an equivalent Turing machine N with only one accepting state qA
 moreover
 the

Turing machine halts whenever it accepts� Now
 suppose we wish to check that N is empty�

We ask if �N� qA
 � DTM� It is clear that M is empty i� N is empty i� �N� qA
 is in DTM�



�� RNFA is recursive� This is because language equivalence is recursive�

�� RPDA is co�r�e� � guess a string w that is in L�M

 but not in L�M nfqg
 �or a string w that is

in L�M n fqg
 but not in L�M


 and run the recursive algorithm for membership on the two

machines interleaved� It is not recursive
 however� We reduce from CFG universality �which

is not recursive
� Given a PDA M � �Q����� �� q�� F 

 construct the PDA M � by adding a

new state qA
 and an edge from q� to qA labeled with �� From qA
 the machine trivially accepts

everything� Thus
 the PDA nondeterministically decides to go to qA and accept trivially
 or to
simulate the original machine� Then the language of M � is clearly ��� However
 the language

of M � n qA is the same as the language of M � Then
 L�M �
 � L�M � n qA
 i� L�M
 � ��� But

the latter is not recursive
 hence the former cannot be recursive either�

�� RTM is neither r�e� nor co�r�e� We reduce from TMUniversality
 the idea is similar to the

reduction for RPDA� Given a TM M 
 we construct the TM M � as follows� M � has an initial

state qI from which it nondeterministically decides to go to either the start state of M 


or to a new state qA from which it accepts all inputs trivially� Then
 L�M �
 � ��
 and

L�M � n fqAg
 � L�M
� Hence
 L�M
 � �� i� L�M �
 � L�M � n fqAg
�


