University of California, Berkeley - College of Engineering
Department of Electrical Engineering and Computer Sciences

Spring 2001 Instructor: Dan Garcia 2001-04-09

CS
M dt er

3
m #2

Personal Information

Last name

First Name

Student ID Number

Lab Section Time & Location you attend

All the work is my own. | had no prior knowledge of the
exam contents nor will | share the contents with others
in CS3 who have not taken it yet. (please sign)

Instructions

Question O (worth 1 point) Please fill in the
front and write your name on every page!

You have two hours to complete this
midterm. The midterm is open book and
open notes, no computers.

Partial credit will be given for incomplete /
wrong answers, so please write down as
much of the solution as you can.

You may always write auxiliary functions
for a problem unless they are specifically
prohibited in the question.

Feel free to use any Scheme function that
was described in sections of the textbook
we have read without defining it yourself.

You do not need to write comments for
functions you write unless you think the
grader will not understand what you are
trying to do otherwise.

Please comment on the exam on the right.
Rate its difficulty (O = cake, 5 =
impossible), fairness (0 = unfair, 5 = fair),
and feel free to add any other comments
that come to mind.

Page 1 of 1

Name:

Grading Results

Max. Points
Question Points Given
0 1
1 13
2 20
3 10
4 16
Total 60

Comments:
Difficulty (O=easy, 5=hard):
Fairness (O=unfair, 5=fair):
Other thoughts?

Page 2 of 2

Name:

Question 1: So one time...at dance camp... (13 points)

You decide to attend a dance camp. The day before you get there you do nothing.
When you arrive at the camp, they teach you an interesting dance, which you
perform for several days. The dance is as follows:

1) Hop on your left foot the number of days you’ve been at camp.
2) Do the dance you did yesterday.

3) Hop on both feet the number of days you’ve been at camp.

4) Do the dance you did yesterday.

5) Hop on your right foot the number of days you’ve been at camp.

You decide to encode this as a Scheme procedure dance, which takes in what day
it is and returns a sentence telling you what to do on a particular day. You use a
code: “left foot hop” is L, “both feet hop” is B and “right foot hop” is R, and you
attach a number to the end of that code to indicate the number of times to do it.
So, for example, R5 means “hop on your right foot 5 times”. Even though you may
be hopping several times, each code (e.g., R5) is considered one “thing-to-do”.

(define (dance day) ;; What should I do at dance today?
(f (: day 0) ;; before you got to camp
;; do nothing
(se (word “L day) '; hop on your left foot day times
(dance (- day 1)) do the dance you did yesterday
(word “B day) ; hop on both feet day times
(dance (day 1)) do the dance you did yesterday
(word “R day)))) ;; hop on your right foot day times

a) What do you do on the first day? l.e., what does (dance 1) return? (1 point)

b) What do you do on the second day? I.e., what does (dance 2) return? (4 points)

C) How many things do you do on the third day? I.e., what does (count (dance 3))
return? (4 points)

d) What is the 90" thing you do on the 100" day? l.e., what is the 90" word of
(dance 100)? Hint: look for patterns! (4 points)

Page 3 of 3

Name:

Page 4 of 4

Name:

Question 2 :Yay bor de bay bor de bor bork bork bork!... (20 points)

The Swedish Chef wants to write a program to simulate the putting-together of
foods. For example:

: (put-together "(bacon lettuce tomato) "bread) = baconbreadlettucebreadtomato
. (put-together "(chicken basket) "-in-a-) = chicken-in-a-basket

More formally, put-together takes in s, a sentence of words and glue, a glueing
word, and returns a word will all the words in s put together with glue. However,
if there's only one thing to put together, it doesn’t stick anything in between:

: (put-together "(chocolate) "moose) = chocolate

Finally, put-together should not have to worry about putting together empty
sentences.

a) What pattern is put-together? Circle one. (2 points)
MAPPING FINDING COUNTING FILTERING TESTING COMBINING

b) Write put-together using embedded recursion with no helper functions and no
higher-order functions. (6 points)

(define (put-together s glue)

Gif

)

c) Write put-together using tail-recursion with no higher-order functions.
(6 points)

(define (put-together s glue)

d) Write put-together using a single higher-order function, no helper functions and
no recursion (6 points).

Page 5 of 5

Name:

(define (put-together s glue)

)

Page 6 of 6

Name:

Put down your pen or pencil, stretch, take a deep breath, and proceed...

Page 7 of 7

Name:

Question 3 : Driving Miss Calculate... (10 points)

Clarissa Calculate writes a function called calculator that takes a sentence of the
form (number operation number operation.._number), where plus and times are the
only operations, and calculates the result:

: (calculator "(5)) ==> 5 ; 5

: (calculator "(2 plus 2)) ==> 4 2+ 2

: (calculator "(1 plus 3 times 4 plus 1)) ==> 14 ;1 +3* 4+ 1
: (calculator "(4 times 3 plus 1 plus 1)) ==> 14 ;4*3+1+1

Notice that times is always more important than plus. l.e., (1 plus 2 times 3) IS
evaluated as 1 + (2 * 3), and not (1 + 2) * 3. You may assume that calculator is
always called on valid sentences and is never called on the empty sentence.
Unfortunately, Miss Calculate’s code has two bugs in it that you need to fix.
Consider the following incorrect code:

(define (second s) (First (bf s)))
(define (third s) (first (bf (bf s))))

(define (calculator s)
(cond

((empty? (bf s))
0)

((equal? (second s) "plus)
(+ (first s)
(calculator (bf (bf s)))))
(else
(calculator
(se (* (first s) (third s))

OCO~NOUITAWNE

a) Typing (calculator (1 plus 2 plus 3)) gives you 3 when it should return 6.
Replace one line so that (calculator *(1 plus 2 plus 3)) correctly returns 6.
The code should then work for all sentences which only use plus. (5 points)

Replacing line # ,
with

would cause (calculator “(1 plus 2 plus 3)) to correctly return 6 instead of 3.

b) There is one remaining bug. Typing (calculator (1 plus 2 times 3)) goes into
an infinite loop and never returns an answer when it should return 7. Replace
one line so that (calculator *(1 plus 2 times 3)) correctly returns 7. After
making both bug fixes in parts a and b, calculator should work for all valid
input. (5 points)

Replacing line # ,
with

would cause (calculator “(1 plus 2 times 3)) to correctly return 7.

Page 8 of 8

Name:

Question 4 : Parking in Berkeley (get it?) (16 points)

Have you ever tried to park on a side street in a Berkeley residential area? People
do such a poor job parking that they waste most of the street. How many cars can
park on a particular street given that people park randomly?* Finding a formula
for the average number of cars (all of a given size) that can park on a street (of a
given length) isn't easy. However, it's not too hard to simulate (we’re going to
assume cars don’t need any extra “breathing room” space between them to park):

1) See if the section of street you are looking at can fit at least one car. If it can,
assume somebody will try to park.

2) Pick a random location for a car to park.

3) Divide the street into two parts: the street behind the car & the street in front.

4) See how many cars can park behind the one that just parked. See how many
can park in front of the one that just parked.

Luckily, someone else has done step #1 and #2 above for us. They’ve provide a
semi-predicate called park?, which takes the length of a car and the length of the
available street. It randomly picks a place for the car to park and returns the
location of the car's back end. If park? can’t even park one car (i.e., it is called with
the length of a car bigger than the length of the street), it returns #f. E.g.,

(park? 1 10) ==> 0 ;; this car (car:i) parked at one end of the street
(park? 1 10) ==> 4.5 ;; this car (car:) parked in the middle of the street
(park? 1 10) ==> 9 ;:; this car (cars) parked at the other end of the street

(park? 11 10) ==> #f ;; this huge car is bigger than the available street

(park? 2 10) ==> 3 ;:; this big car (cari) parked, two spaces (3 and 5) left

Write a procedure called num-parked, which takes car, the length of a car and
street, the length of the street, and returns the number of cars that were able to
park on the street before they ran out of space. Use no helper functions. (16
points)

(num-parked 1 10) ==> 7 ;; this time, 7 cars all of size 1 were able to park

1 Mathematicians call this the parking problem. It also shows up in fun fields like gene sequencing.

Page 9 of 9

Name:

(define (num-parked car street)

(et (

GaFf

D))

Page 10 of 10

