CS 170 First Midterm 15 Feb 2001

NAME (1 pt):

TA (1 pt):

Name of Neighbor to your left (1 pt):

Name of Neighbor to your right (1 pt):

Instructions: This is a closed book, closed calculator, closed computer, closed network, open
brain exam, but you are permited a 1 page, double-sided set of notes, large enough to read
without a magnifying glass.

All directed graphs in this exam are assumed not to have self-loops.

You get one point each for filling in the 4 lines at the top of this page. Each other question
is marked by the number of points it is worth.

Write all your answers on this exam. If you need scratch paper, ask for it, write your name
on each sheet, and attach it when you turn it in (we have a stapler).

AW DN —

Total

la) (20 points) Run the Strongly Connected Components (SCC) algorithm on the following
graph. Show the pre and post numbers for both passes of DFS. Where there are several choices
of vertex to start at or edges to follow, go to the vertex that occurs earliest alphabetically.

3/4 6/9 5/12 10/11

a7 13/16 9/12 10/11

1b) How can we topologically sort the SCCs without running another pass of DFS? Assume
you still have all the information generated by the SCC algorithm available, including pre
and post numbers generated during each pass of DFS, and the SCC number assigned to each
vertex.
ANSWER. During the second pass of DF'S in the SCC algorithm, each connected component
of G was visited in topological order, so we can simply output the components in the order
they were visited.

Another solution is to sort the components in reverse order by the maximum post number
in each component from the first pass of DFS. Or, sort the components in forward order by
the minimum/maximum pre/post number in each component from the second pass of DFS.

la) (20 points) Run the Strongly Connected Components (SCC) algorithm on the following
graph. Show the pre and post numbers for both passes of DFS. Where there are several choices

of vertex to start at or edges to follow, go to the vertex that occurs earliest alphabetically.
2/13 114 15/16 7/8

6/9

5/6 3/8 12 14/15

1b) How can we topologically sort the SCCs without running another pass of DFS? Assume
you still have all the information generated by the SCC algorithm available, including pre
and post numbers generated during each pass of DFS, and the SCC number assigned to each
vertex.
ANSWER. During the second pass of DF'S in the SCC algorithm, each connected component
of G was visited in topological order, so we can simply output the components in the order
they were visited.

Another solution is to sort the components in reverse order by the maximum post number
in each component from the first pass of DFS. Or, sort the components in forward order by
the minimum/maximum pre/post number in each component from the second pass of DFS.

la) (20 points) Run the Strongly Connected Components (SCC) algorithm on the following
graph. Show the pre and post numbers for both passes of DFS. Where there are several choices
of vertex to start at or edges to follow, go to the vertex that occurs earliest numerically.

6/9 %/\5/12

NN

14/15 12 a7 5/6

1b) How can we topologically sort the SCCs without running another pass of DFS? Assume
you still have all the information generated by the SCC algorithm available, including pre
and post numbers generated during each pass of DFS, and the SCC number assigned to each
vertex.
ANSWER. During the second pass of DF'S in the SCC algorithm, each connected component
of G was visited in topological order, so we can simply output the components in the order
they were visited.

Another solution is to sort the components in reverse order by the maximum post number
in each component from the first pass of DFS. Or, sort the components in forward order by
the minimum/maximum pre/post number in each component from the second pass of DFS.

2) (24 points) True or False? No explanation required, except for partial credit. Each
correct answer is worth 2 points, but 2 points will be subtracted for each wrong answer, so
answer only if you are reasonably certain.

1.

Let X be a minimum spanning tree of the weighted undirected graph G(V, E). Let
G'(V',E") be another graph defined by augmenting G with a new vertex u and some
weighted edges incident on u. In other words, V! =V U{u} and E' = EUF where F is
a set of edges touching u. Then there is always a minimum spanning tree X’ of G’ such
that X C X'.

ANSWER. False. If the weights of edges in F are all very large, and u has a very light
edge connecting it to every vertex in V', then the unique minimum spanning tree will
equal F'.

. eV is O(eV™) for all ¢ > 0.

ANSWER. False, because eV = eVelc=DV and elc=DV g not O(1) for ¢ > 1.

sin(n)

n*Tlogn is O(n?2).

sin(n) sin(n)

ANSWER. True, because n Toogn = p2pTogn = 22801 < 2p2,

Let G be an undirected graph, and let G’ be another undirected graph. G’ has one vertex
for each biconnected component of G (and no other vertices). Two vertices in G’ are
connected by an edge if and only if the two corresponding biconnected components in G
share a vertex. Then G’ can have a cycle.

ANSWER. True. Let G consist of three triangles (a triangle is a graph with 3 vertices
and 3 edges) sharing a single common vertex. Then each triangle is a biconnected
component, and G’ is also a triangle.

Let G be a directed graph. The Bellman-Ford algorithm will find the longest path (if it
is finite, or report if it is not) from the start vertex s to any other vertex v in a graph if
we negate all the edge weights W (e) before running the algorithm.

ANSWER. True, because minimizing }°,c,.:, —W (e) over paths is the same as maxi-
mizing 3. W (e).

Let G be a directed graph with positive edge weights W (e). Let Wy,4, = max, W (e) be
the maximum edge weight. Dijkstra’s algorithm will find the longest path from the start

vertex s to any other vertex v in a graph if we replace all the edge weights W (e) by the
new positive weights 1 + Wy,4, — W (e) before running the algorithm.

ANSWER. False, because minimizing 3. c a5 (1 + Winae — W(e)) = Length(path) -
(1 + Winaz) — Xecparn, W (e) depends on the length of the path, and so is not necessarily
the same as maximizing > c ., W (e).

After we run DFS on a directed graph G, it is possible for a single vertex v € G to
be simultaneously incident on at least one back edge, forward edge, cross edge and tree
edge.

ANSWER. True
It is always cheaper to use a binary heap instead of a linked list to implement Dijkstra’s
algorithm.

ANSWER. False. A binary heap can cost O(n?logn) on a dense graph whereas a
linked list costs O(n?).

9.

10.

11.

12.

Let T(0) = 1 and T'(n) = 271 for n > 1. Then the cost of computing T'(n) and
printing it out as a binary integer is ©(T'(n — 1)).

ANSWER. True, because T'(n) is T'(n — 1) bits long, which is how long it takes just to
write down the answer.

If T(n) = 49T (n/7) + n? cos y/n, then T'(n) = O(n?logn).

ANSWER. True, because T'(n) is bounded above by S(n) where S(n) = 495 (n/7)+n?,
and from the Master Theorem S(n) = ©(n?logn).

Let G(V, E) be an undirected graph. Then G has a cycle if and only if it is possible to
put directions on all the edges in E so that every vertex in V has an edge pointing to it.

ANSWER. False. It would be true if G were connected, by the following argument: If
there is a cycle, direct all the edges in the cycle “circularly.” Then traverse the rest of
the graph by DFS starting from vertices in the cycle, and make all the tree edges point
away from the cycle. Back edges can be directed arbitrarily. If there is no cycle, then G
is a tree, with |E| = |V| — 1, so there aren’t enough edges to point to every vertex. But
if G is disconnected with one acyclic component and one component with a cycle, then
the statement is not true.

The paths computed by Bellman-Ford after the 2nd iteration might be the shortest.

ANSWER. True. In fact Bellman-Ford might be done after one iteration if it is applied
to a chain in topological order.

2) (24 points) True or False? No explanation required, except for partial credit. Each
correct answer is worth 2 points, but 2 points will be subtracted for each wrong answer, so
answer only if you are reasonably certain.

1.

It is always cheaper to use a binary heap instead of a linked list to implement Dijkstra’s
algorithm.

ANSWER. False. A binary heap can cost O(n?logn) on a dense graph whereas a
linked list costs O(n?).

Let G be an undirected graph, and let G’ be another undirected graph. G’ has one vertex
for each biconnected component of G (and no other vertices). Two vertices in G’ are
connected by an edge if and only if the two corresponding biconnected components in G
share a vertex. Then G’ can have a cycle.

ANSWER. True. Let G consist of three triangles (a triangle is a graph with 3 vertices
and 3 edges) sharing a single common vertex. Then each triangle is a biconnected
component, and G’ is also a triangle.

Let G be a directed graph. The Bellman-Ford algorithm will find the longest path (if it
is finite, or report if it is not) from the start vertex s to any other vertex v in a graph if
we negate all the edge weights W (e) before running the algorithm.

ANSWER. True, because minimizing }°,c,.:, —W (e) over paths is the same as maxi-
mizing 3. W(e).

Let G be a directed graph with positive edge weights W (e). Let Wy, = max, W (e) be
the maximum edge weight. Dijkstra’s algorithm will find the longest path from the start
vertex s to any other vertex v in a graph if we replace all the edge weights W (e) by the
new positive weights 1 + Wy,4, — W (e) before running the algorithm.

ANSWER. False, because minimizing 3 ,c,q5(1 + Winaz — W(e)) = Length(path) -
(1 + Winaz) — Xecpatn W (e) depends on the length of the path, and so is not necessarily
the same as maximizing >-.c ., W (e)-

After we run DFS on a directed graph G, it is possible for a single vertex v € G to
be simultaneously incident on at least one back edge, forward edge, cross edge and tree
edge.

ANSWER. True

Let X be a minimum spanning tree of the weighted undirected graph G(V,FE). Let
G'(V',E") be another graph defined by augmenting G with a new vertex u and some
weighted edges incident on u. In other words, V! =V U{u} and E' = EUF where F is
a set of edges touching u. Then there is always a minimum spanning tree X’ of G’ such
that X C X'

ANSWER. False. If the weights of edges in E are all very large, and u has a very light
edge connecting it to every vertex in V, then the unique minimum spanning tree will
equal F'.

If T(n) = 49T (n/7) + n? cos /0, then T'(n) = O(n?logn).

ANSWER. True, because T'(n) is bounded above by S(n) where S(n) = 49S(n/7) +n?,
and from the Master Theorem S(n) = ©(n?logn).

10.

11.

12.

The paths computed by Bellman-Ford after the 2nd iteration might be the shortest.

ANSWER. True. In fact Bellman-Ford might be done after one iteration if it is applied
to a chain in topological order.

Let G(V, F) be an undirected graph. Then G has a cycle if and only if it is possible to
put directions on all the edges in E so that every vertex in V has an edge pointing to it.
ANSWER. False. It would be true if G were connected, by the following argument: If
there is a cycle, direct all the edges in the cycle “circularly.” Then traverse the rest of
the graph by DFS starting from vertices in the cycle, and make all the tree edges point
away from the cycle. Back edges can be directed arbitrarily. If there is no cycle, then G
is a tree, with |E| = |V| — 1, so there aren’t enough edges to point to every vertex. But
if G is disconnected with one acyclic component and one component with a cycle, then
the statement is not true.

Let T(0) = 1 and T'(n) = 271 for n > 1. Then the cost of computing T'(n) and
printing it out as a binary integer is ©(T'(n — 1)).

ANSWER. True, because T'(n) is T'(n — 1) bits long, which is how long it takes just to
write down the answer.

eV is O(eV™) for all ¢ > 0.

ANSWER. False, because eV = eVelc=DV and e(c=DV g not O(1) for ¢ > 1.

sin(n)

n’Tlogn is O(n?2).

sin(n) sin(n)

ANSWER. True, because n*tlogn = pZpTosn = 228NN < 22,

2) (24 points) True or False? No explanation required, except for partial credit. Each
correct answer is worth 2 points, but 2 points will be subtracted for each wrong answer, so
answer only if you are reasonably certain.

1.

Let G be a directed graph. The Bellman-Ford algorithm will find the longest path (if it
is finite, or report if it is not) from the start vertex s to any other vertex v in a graph if
we negate all the edge weights W (e) before running the algorithm.

ANSWER. True, because minimizing 3¢, —W (e) over paths is the same as maxi-
mizing 3. W(e).

Let G be a directed graph with positive edge weights W (e). Let Wy,4, = max, W (e) be
the maximum edge weight. Dijkstra’s algorithm will find the longest path from the start

vertex s to any other vertex v in a graph if we replace all the edge weights W (e) by the
new positive weights 1 + Wy,4, — W (e) before running the algorithm.

ANSWER. False, because minimizing 3 ,c,qp(1 + Wiaz — W(e)) = Length(path) -
(1 + Winaz) = Xecpatn W (e) depends on the length of the path, and so is not necessarily
the same as maximizing >-.c ., W (€)-

eV is O(eV™) for all ¢ > 0.
ANSWER. False, because eV = eVelc=DV and elc=DVn is not O(1) for ¢ > 1.

sin(n)

. n* T leen is O(n?).

sin(n) sin(n)

ANSWER. True, because n*tlogn = n2pTogn = p22sinn < 2n2.

After we run DFS on a directed graph G, it is possible for a single vertex v € G to
be simultaneously incident on at least one back edge, forward edge, cross edge and tree
edge.

ANSWER. True

It is always cheaper to use a binary heap instead of a linked list to implement Dijkstra’s
algorithm.

ANSWER. False. A binary heap can cost O(n?logn) on a dense graph whereas a
linked list costs O(n?).

Let X be a minimum spanning tree of the weighted undirected graph G(V, E). Let
G'(V',E") be another graph defined by augmenting G with a new vertex u and some
weighted edges incident on u. In other words, V! =V U{u} and E' = EUF where F is
a set of edges touching u. Then there is always a minimum spanning tree X’ of G' such
that X C X'

ANSWER. False. If the weights of edges in F are all very large, and u has a very light
edge connecting it to every vertex in V, then the unique minimum spanning tree will
equal F.

Let G(V, E) be an undirected graph. Then G has a cycle if and only if it is possible to
put directions on all the edges in E so that every vertex in V has an edge pointing to it.

ANSWER. False. It would be true if G were connected, by the following argument: If
there is a cycle, direct all the edges in the cycle “circularly.” Then traverse the rest of
the graph by DFS starting from vertices in the cycle, and make all the tree edges point
away from the cycle. Back edges can be directed arbitrarily. If there is no cycle, then G

10.

11.

12.

is a tree, with |E| = |V| — 1, so there aren’t enough edges to point to every vertex. But
if G is disconnected with one acyclic component and one component with a cycle, then
the statement is not true.

The paths computed by Bellman-Ford after the 2nd iteration might be the shortest.

ANSWER. True. In fact Bellman-Ford might be done after one iteration if it is applied
to a chain in topological order.

Let T(0) = 1 and T'(n) = 271 for n > 1. Then the cost of computing T'(n) and
printing it out as a binary integer is ©(T'(n — 1)).

ANSWER. True, because T'(n) is T'(n — 1) bits long, which is how long it takes just to
write down the answer.

If T(n) = 49T (n/7) + n? cos y/n, then T(n) = O(n?logn).

ANSWER. True, because T'(n) is bounded above by S(n) where S(n) = 49S(n/7) +n?,
and from the Master Theorem S(n) = ©(n?logn).

Let G be an undirected graph, and let G’ be another undirected graph. G’ has one vertex
for each biconnected component of G (and no other vertices). Two vertices in G’ are
connected by an edge if and only if the two corresponding biconnected components in G
share a vertex. Then G’ can have a cycle.

ANSWER. True. Let G consist of three triangles (a triangle is a graph with 3 vertices
and 3 edges) sharing a single common vertex. Then each triangle is a biconnected
component, and G’ is also a triangle.

10

3) (18 points) Let G(V, E) be a directed graph, with a weight W (v) associated with each
vertex v € V. Let p =< vg,v1,v9,...,v, > be a path in GG, with no repeated vertices. Then
the weight of the path p is defined as the sum of the vertex weights on the path: W(p) =
i=o W (vi).

3a) Suppose the vertex weights are positive. Let s € V be a vertex. Give an efficient algorithm
for finding the paths of minimum weight from s to all other vertices in G. You should give
high-level pseudo code for the algorithm, justify its correctness, and analyze its complexity
in a O() sense. You may use any algorithm presented and analyzed in class so far without
repeating its correctness proof or complexity analysis.

ANSWER. This part was worth 9 points, 3 each for a correct algorithm, a proof of correctness,
and a complexity analysis. The reason the answer is not just “Dijkstra” is that the weights
of G are on the vertices, not the edges, where Dijkstra needs them. There are a number of
solutions, all with the same pattern:

1. Define a new graph G'(V', E'), closely related to G but with edge weights instead of
verter weights, that has the same set of shortest (edge weight) paths between any pair
of vertices.

2. Run Dijkstra (or Bellman-Ford, for part 3b)) on G'.

Full credit required identifying the graph G’, showing that the shortest paths were the same,
and applying Dijkstra to G'; saying the complexity was therefore the same as Dijkstra was
enough.

Here are some ways to build G'(V', E'). At least one student found each solution.

1. Let V! =V and E' = E, iie. G’ and G has the same vertices and edges. Then
let the weight W, (u,v) of edge (u,v) be the weight of vertex v: W,(u,v) = W(v).
(The subscript on W, reminds us that it gives edge weights on G’.) Now consider any
path p =< s,v1,v9,...,v,,d > from s to d in G or G'. Its weight in G is W(p) =
W(s)+W(d)+ >, W(v,), and its weight in G’ is

n—1 n
We(p) = We(s,01) + Y We(vi,vi1) + Wel(v, d) =Y W (v;) + W(d)
=1 =1

that is We(p) = W(p) — W(s). So all paths from s to d in G’ have the same weights
as in G, minus W(s). In particular, the shortest paths are all the same, so Dijkstra’s
method finds them correctly. To get the correct W (p) as well, one needs to add W (s) to
the paths found by Dijkstra, but this was not explicitly required by the question.

2. Let V! =V and E' = E as above, but now let W, (u,v) = W(u) instead of W (v). The
same algebra as above shows W,(p) = W (p) — W(d) instead of W (p) — W (s), but again
the shortest paths from s to d in G and G’ are the same.

3. Let V! =V, E' = E and W,(u,v) = oW (u) + W (v) where « >0, 8 > 0 and o+ > 0.
This includes the above two solutions as special cases (¢« = 0 and = 1 for the first
algorithm; o = 1 and f = 0 for the second algorithm), another solution turned in
(a = 8 =.5) and many more besides. The same algebra as before shows that

Welp) = W () + (@ + B) S W(vy) + AW (d)

=1

This means that if p; and ps are any two paths from s to d, then W(py) > W (p2) if and
only if We(p1) > We(p2), i.e. the shortest paths in G and G’ are the same.

11

4. One last solution uses a different G'(V', E'). For each v € V, create two vertices v;, €
V' and voy € V'. Let there be an edge (vi,vour) € E' for every v € V, and let
We(Vin, Vout) = W(v). To get the remaining edges in E', take every (u,v) € E and
convert it to (Uoyt, vin) € E'. (Draw a picture to see how this works.) Again consider
any path p =< s,v1,v9,...,up,d > from s to d in G. There is a corresponding path

/
P =< Sin, Sout, Ul,iny Ul,0uts V2,iny U2,0uts +-+y Un in, Un,out, dina dout >

in G'. It is easy to see that this defines a one-to-one correspondence between paths
from s to d in G, and paths from s;, to d,y; in G’, since any path must have every
other edge be of the form (vip,veut). Furthermore, it is obvious that W.(p') = W (p).
Therefore, shortest paths from s to d in G are the same as shortest paths from s;,
t0 dyy; in G', and Dijkstra works again. The cost for a binary heap implementation is
O(|E'|log |V']) = O((|E|+|V|) log 2|V'|), which is essentially the same as Dijkstra applied
to G itself.

3b) Now Suppose the vertex weights may take any values, not just positive ones, and answer
the same question as in part 3a.

ANSWER. The approach is the same as 3a: create graph G’ and run Bellman-Ford, for a
total cost of O(|V'] - |E']),

12

4) (18 points) Let T be a MST in the weighted graph G(V, E). Let G'(V', E') be a graph
obtained by removing one vertex u from G (so that V' =V — {u}), and by removing all the
edges incident on w.

Let e € E be any edge of T not incident on u. Prove that there is an MST of G’ that
contains e.

Hint: The cut property says:

Let X C T where T is a Minimum Spanning Tree (MST) in the weighted graph
G(V,E). Let S C V such that no edge in X crosses between S and V' — S; i.e. no
edge in X has one endpoint in S and one endpoint in V' —S. Among edges crossing
between S and V — S, let e be an edge of minimum weight. Then X U {e} C T"
where 7" is a MST in G(V, E).

ANSWER. If we were to remove the edge e, T' would be partitioned into two subtrees T}
and T,. We claim e is a minimum edge crossing from T} to T5. Why? If some other edge ¢’
crossing from T} to Ty has weight w(e') < w(e), then Ty UTy U {e'} is a smaller spanning tree
in G than T. But T is a MST in G, so w(e') cannot be less than w(e).

Let S be the set of vertices spanned by T}, excepting u. Because we leave out u, S C V.
By setting X = {} in the cut theorem, we find that some MST of G’ contains e.

13

