
<!--CS 170, Midterm #1, Spring 2000 -->

CS 170, Spring 2000
Midterm #1

Professor M. Clancy

This is an open-book test. You have approximately eighty minutes to complete it. You may consult any
books, notes or other paper-based inanimate objects available to you. To avoid confusion, read the problems
carefully. If you find it hard to understand a problem, ask us to explain it. If you have a question during the
test, please come to the front or the side of the room to ask it.

This exam comprises 15% of the points on which your final grade will be based. Partial credit may be given
for wrong answers. Your exam should contain six problems (numbered 0 through 5) on eight pages, with
two more blank pages at the back of the exam. Please write your answers in the spaces provided in the test;
in particular, we will not grade anything on the back of an exam page unless we are clearly told on the front
of the page to look there.

Relax -- this exam is not worth having a heart failure about.

Problem #0 - 1 point, 1 minute

Put your name on each page. Also make sure you have provided the information requested on the first
page.

Problem #1 - 4 points, 10 minutes

Suppose that the following statements initialize the union/find structure descibed in CLR section 22.3.

 for (k=0; k<6; k++) {
 MakeSet(k);
}

On the next page show the data structures, including ranks of representative elements, that result for each
of the following statements. Assume that the statements are executed in sequence. Also assume, as in CLR,
that the path compression and union-by-rank optimizations are used, and that the representative element of
the second argument becomes the parent when the two arguments have equal rank.

 Union (0,1);
 Union (2,3);
 Union (0,2);

file:///C|/Documents%20and%20Settings/Jason%20Raft...20Spring%202000%20-%20Clancy%20-%20Midterm%201.htm (1 of 6)1/27/2007 5:29:00 PM

<!--CS 170, Midterm #1, Spring 2000 -->

 Union (4,5);
 Union (0,4);

Results of Union calls

 |
call | resulting data structure, including rank(s)
------------+---
Union(0,1); |
 |
 |
 |
 |
 |
 |
------------+---
Union(2,3); |
 |
 |
 |
 |
 |
 |
 |
------------+---
Union(0,2); |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
------------+---
Union(4,5); |
 |

file:///C|/Documents%20and%20Settings/Jason%20Raft...20Spring%202000%20-%20Clancy%20-%20Midterm%201.htm (2 of 6)1/27/2007 5:29:00 PM

<!--CS 170, Midterm #1, Spring 2000 -->

 |
 |
 |
 |
------------+---
Union(0,4); |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |

Problem #2 - 6 points, 15 minutes

This problem concerns an implementation of Prim's algorithm as given in CLR that maintains the priority
queue as an unsorted singly linked list.

The three C declarations below are used to store the graph in adjacency list format. Some extra fields have
been added that anticipate the application of Prim's algorithm.

 struct Graph {
 struct Vertex verticies[]; // The array of vertices
 };

 struct Vertex {
 int index; // The "name" of the vertex
 int key; // Key value used to organize the priority queue
 struct QueueNode* qPtr; // Pointer to a node in the queue
 struct NbrList* neighbors; // Adjacency list.
 };

 struct NbrList {
 struct Vertex* nbr; // The other endpoint of this edge

file:///C|/Documents%20and%20Settings/Jason%20Raft...20Spring%202000%20-%20Clancy%20-%20Midterm%201.htm (3 of 6)1/27/2007 5:29:00 PM

<!--CS 170, Midterm #1, Spring 2000 -->

 int w; // The weight of this edge
 struct NbrList* next;
 };

Elements of the priority queue, implemented as an unsorted singly linked list, are declared in C as follows.

 struct QueueNode {
 struct Vertex* v; // Pointer to the corresponding vertex
 struct QueueNode* next;// Ptr to the next priority queue element
 };

(The structs will all be classes in Java.)

Part A

Give an estimate of the worst-case running time required to build the spanning tree for a graph of n
vertices and e edges using an unsorted linked list priority queue as just described. Briefly justify your
estimate.

Part B

Assume that the contents of the queue are initially V1, V2, V3, V4. Supply edge weights for the graph
below that produce the worst-case behavior when starting at vertex V1. Also, briefly explain why your
example results in worst-case behavior.

file:///C|/Documents%20and%20Settings/Jason%20Raft...20Spring%202000%20-%20Clancy%20-%20Midterm%201.htm (4 of 6)1/27/2007 5:29:00 PM

<!--CS 170, Midterm #1, Spring 2000 -->

Problem #3 - 3 points, 10 minutes

Give a tight estimate for the following recurrene, simplified as much as possible. Assume that values of T
for small values of n are constant; that is, T(0) = ((1), T(1)=((1), T(2)=((1).

 T(n) = 9T(n/3) + n^2 + n lg n

Explain your answer.

Problem #4 - 8 points, 20 minutes

Prove that a graph G = (V,E) with no isloated vertices is strongly connected if and only if there is a circuit
in G that inclued every edge at least once (and possibly more than once).

Problem #5 - 8 points, 24 minutes

file:///C|/Documents%20and%20Settings/Jason%20Raft...20Spring%202000%20-%20Clancy%20-%20Midterm%201.htm (5 of 6)1/27/2007 5:29:00 PM

<!--CS 170, Midterm #1, Spring 2000 -->

Give an efficient algorithm that, given a directed acyclic graph G = (V,E) and a vertex a in V, counts the
number of paths from a to all other vertices. For example, there are five paths from a to b in the graph
displayed below, namely aeb, aedb, aceb, acedb, and acdb.

Provide sufficient comments for us to understand how your algorithm works. An incorrect algorithm may
earn you partial credit if we can understand it; if you know it won't work, provide a counterexample with
your algorithm description.

Posted by HKN (Electrical Engineering and Computer Science Honor Society)
University of California at Berkeley

If you have any questions about these online exams
please contact mailto:examfile@hkn.eecs.berkeley.edu

file:///C|/Documents%20and%20Settings/Jason%20Raft...20Spring%202000%20-%20Clancy%20-%20Midterm%201.htm (6 of 6)1/27/2007 5:29:00 PM

mailto:examfile@hkn.eecs.berkeley.edu

	Local Disk
	<!--CS 170, Midterm #1, Spring 2000 -->

