of Exams: 139 Mean: 148.7 Standard Deviation: 26.3

UNIVERSITY OF CALIFORNIA, BERKELEY MECHANICAL ENGINEERING ME106 Fluid Mechanics 2nd Test, S08 Prof S. Morris

NAME SOLUTIONS

1.(60) The large reservoir drains through a long cylindrical pipe in which the power loss is given by $\frac{1}{2}\dot{m}fV^2\frac{L}{d}$. Derive the differential equation giving dh/dt in terms of h, the friction factor f, and the constants shown in the figure. (You are not asked to solve the differential equation.)

IN BLOCK LETTERS PRINT YOUR NAME ON THIS PAGE

2s08 - 1

-5 : Any sign errors in you expressions or math AND/OR if you incorrectly concluded dh/dt was positive. -5 : Your final solution contained terms not in the list of knowns, i.e. A1, A2, v

Full credit if you elected to leave v1 = -dh/dt in your energy expression rather than taking it to be neglible AND correctrly worked out the remainder of the solution.

Question 2 Mean: 49.5 / 60 Standard Dev: 16.4

2. (60) An aircraft cruises subsonically at an elevation where the atmospheric temperature and pressure are respectively T_a and p_a . Assuming the Bernoulli equation in either of the two forms given in the lecture notes, and a suitable isentropic relation, *derive* an expression giving the speed V of the aircraft in terms of p_a , T_a , the measured stagnation pressure p_0 and the constants γ and c_p . (You will not receive credit for simply writing down the answer.)

along stagnation SL from as to stagnation point: BE $\frac{1}{2}V^{2} + c_{p}T_{a} = c_{p}T_{b}$ (4) +15: Correctly stating Compressible Bernoulli in this form V,Ta or the alternate form presented in the reader. $T/T_a = (b/p_a)^{1/8}$ But +20: Correct and proper math and $T_o = T_a \left(\frac{b_o}{b_a}\right)^{1-1/2}$ algebra to get from (a) and (b) to 16) the solution. => -5: Small errors such as losing a 2 +15: Correctly stating an Isentropic Relation -10: Mathematical errors Eliminating To between (a), (b) we obtain $V = \sqrt{2cp} T_a \left\{ \begin{pmatrix} b_0 \\ b_1 \end{pmatrix}^{1-1/8} - 1 \right\}$ SOLN +10: Having the correct solution w/o any errors

Question 3 Mean: 52.6 / 80 Standard Dev: 20

3. (80) The large tank is draining through a small hole of area A_e . The smaller figure shows the detail near the exit hole. Specifically, below the exit, the streamlines contract to form a jet with area cA_e , where c < 1 is the contraction coefficient; the speed V_e within that jet is given by the Torricelli theorem as $V_e = \sqrt{2gh}$. By balancing vertical momentum on the control volume shown, show that

$$c = \frac{1}{2} + \frac{1}{2\rho g h A_e} \int_{A'} (\rho g h + p_a - p) \, \mathrm{d}A. \tag{A}$$

The integral is calculated over the area $A' = A - A_e$ of the tank bottom, excluding the exit hole; the liquid pressure on that area is p.

