CS 188 Artificial Intelligence, Spring 2001

http://www-inst.eecs.berkeley.edu/~cs188

Figure 1: The histogram of scores. Vital statistics: N = 147, $\mu = 43$, $\sigma = 14$.

1 Problem 1

See next page

2 Problem 2

The five parts were worth 2 points each. The answers are as follows: (a) Bayesian; (b) Decision tree; (c) Multilayer perceptron; (d) k-NN; (e) Single layer perceptron.

3 Problem 3

The three parts were worth 5 points each. Let w_x and w_y denote the weight of the edges from inputs x and y to the output node, and let t denote the threshold of the output node (so the activation function is $\text{step}_t(z) = 1$ if $z \geq t$ and 0 otherwise, as on page 569). Note that using a threshold of t has the same effect as using a threshold of 0 but adding a bias node with input clamped to 1 and with weight -t.

- (a) NOR. $w_x = -2$, $w_y = -2$, and t = -1 works.
- (b) EQUAL. Not possible, since the inputs for which EQUAL=0 are not linearly separable from the inputs for which EQUAL=1. (Notice also that EQUAL = NOT XOR.)
- (c) ONE. $w_x = 0$, $w_y = 0$, and t = -1 works.

CS 188

[MIDTERM]

March 13,2001

1.(a) Stochastic automaton

$$P(s) = \frac{5}{12}$$

$$P(T) = \frac{2}{12}$$

(b) \(\langle (q_1) = \)	5/12 5/12 2/12	•	0.4	= (5/12
	1/12]		[0	1	10

Emmissions.				
į.	u	7 U		
S	0	1		
R	0.6	0,4		
T	1	0		

4 Problem 4

- a). The joint for Bayes net A is: $\mathbf{P}(X,Y,Z) = \mathbf{P}(Z|Y)\mathbf{P}(Y|X)\mathbf{P}(X)$. Therefore, $\mathbf{P}(X, \neg Y, \neg Z) = \mathbf{P}(\neg Z|\neg Y) * \mathbf{P}(\neg Y|X) * \mathbf{P}(X) = .5 * .8 * .6 = 0.24$
- b). To completely specify Bayes net B, we need the prior probability for node Y and the conditional probability tables (CPTs) for nodes X and Z. So, we want $\mathbf{P}(Y)$, $\mathbf{P}(X|Y)$, and $\mathbf{P}(Z|Y)$ (notice that we are already given $\mathbf{P}(Z|Y)$ in the problem statement). Thus:

$$\mathbf{P}(Y) = \mathbf{P}(Y|X)\mathbf{P}(X) + \mathbf{P}(Y|\neg X)\mathbf{P}(\neg X) = .2 * .6 + .7 * .4 = .12 + .28 = 0.4$$

$$\mathbf{P}(X|Y) = \frac{\mathbf{P}(Y|X)\mathbf{P}(X)}{\mathbf{P}(Y)} = \frac{.2*.6}{.4} = 0.3$$

$$\mathbf{P}(X|\neg Y) = \frac{\mathbf{P}(\neg Y|X)\mathbf{P}(X)}{\mathbf{P}(\neg Y)} = \frac{(1 - .2) * .6}{1 - .4} = 0.8$$

