1. (45)

a) The heat transfer can be gotten by performing an energy balance around a slice of the object

=
VAR
T

qtrotalfout = q}’mlfcylinder + qf'lat bottom hcylinderﬂ-R (Tsurf _Tair ) + hplate 2R (Tsurf _Tair )
Only the heat transfer coefficients are unknown, so the problem is to calculate these.

Properties: at Tim = 400K
2
v =2641x10° T

S
K, =33.8x10" w
me K
Pr,, =0.69

Bottom flat plate
Calculate the Reynolds number

R 10 0.008m
Re, =——= > —=3029

26.41x107° —

S

This is well below the transition value of 5e5, so laminar flow equations are used.

Correlation
Nu =0.664Re!? Pr'* = 0.664+/3029 (0.69) " =32.3
Back out h
— Ngek. 31.32033.8x107 W W
hplate = air. me K =1364 3
2R 0.008m m°K

Top half cylinder — cylinder in a cross flow
Calculate Re



o 1070.008m
Rep =— = —3 —=3029.156

V' 2641x10° ™
S

Correlation
Two are possible for the instruction to evaluate properties at T

7.55b
Nu=CRe}} Pr'* = 0.683(3029)"* 0.69'"* = 25.293

7.57
— 0.62Re"? Pr'? Re s
Nu=0.3+— D 1+( D j =27.96

0.4V 1" 282000
I+ —
n)

7.56 can be used, but properties should be looked up at the air temperature

2
v, =15.89x10 T

S
k,, =26.3x107 W
me K
Pr, =0.707
Pr.q =0.684
e, =—10°0'Ooi =5034.6
15.89x10
pr )" 0.707\"*
NU=CRe] Pr"| — | =0.26(5034.6)"° (0.707)"" (_j =38.37
Pr, 0.684
Back out h
7.55b
w
— 25.293e33.8x10°°
hcylinder = Nu.kair = meK =106.86 Vy
D 0.008m m*K
7.57
W
— 27.96233.8x10°°
— Nuek . W
hcylinder = ® S = me K =118.14 3
D 0.008m m*K
7.56
W
— 38.3726.3x107°
Nu ek _ meK _ 126,150

Hcylinder = = P
D 0.008m m°K



Inserting these into the energy balance
7.55b

qtrotalfout = 10686
7.57
qt’otalfout = 1 1814

W
m?K

70.004m) (200K )+132.33 W 0.008m) (200K =480.3Vl
m

m?K

W
m?K

(70.004m)(200K ) +132.33 mV!K (0.008m) (200K ) = 508.6\%

7.56

qtrotal_out =126.15 W

o (70.004m)(200K)+132.33 W (0.008m)(200K )= 528.8

m?K m




2. (45)

7 Alr
— -~ T=300K
u=30m/s Glass Plate
y f a:mﬁ% t=001m
L. L
|

| 0 T
am

| Find this temperature

Set up heat transfer problem
For no conduction in the x-direction, the 1-D steady state solution for the maximum
temperature is given by equation 3.43, where symmetry has been used
qt’

max = +T
2k

surface

glass

The unknown in this equation is the surface temperature. This can be found by applying an
energy balance at the surface, matching the amount generated in a slice to that leaving

through convection
y=0.0Im |

q” = I qdy =h (Tsurface _Tair )
0
Note that h is the local value.

Properties
Air at T = 350K

2
v =20.92x10° M

S
K = 30x107° w
me K
Pr, =0.7
Glass at 300K
kglass =14 w
me K

Find the convection coefficient
Calculate Re

L 30T e3m
Re, =— = 5 —=4,302,103>10°

Var  20.92x10° M
S

The flow is turbulent



Correlation —
Notes
] 1) This should be a LOCAL calculation
2) The correlation should be for a constant q” boundary condition, no x conduction

Nu = 0.0308Re;* Pr'"* = 0.0308(4302103)"" 0.7 = 5544.5
(The constant T answer is Nu = 0.0296 Re;”” Pr'* = 5328.5)

Back outh
5544.5030%10°
hoNUoke _ meK _ 5545 V2V
L 3m m-K
(The constant T answer ish =53.3 W )
m*K

Solve for the surface temperature

y=0.0lm |
I qdy =h (Tsurface _Tair )
0
w w
10000 = 55.45W(T5mace ~300K)

Torace = 480.4K

(The constant T answer i1s T, = 487.6K)

Solve for the maximum temperature

10° \r;\é(o.mm)2

Tmax - W
2(1.4)
mK

(The constant T answer 1s T =523.3K)

+480.4K =516.1K




(45) 3
T{Xi D] =0 P T{KEL) = TL

Vacuum Region

— |= (J= = Thinmovingrod =)

At steady state, a thin solid rod with no radial temperature variation (T # T(r)) moves at constant
velocity U in the x-direction. The rod passes through a section of vacuum occupying 0<x<L.
Outside this vacuum section, for x<0 the temperature of the rod is maintained at T=0, and for
x>L the temperature of the rod is maintained at Tr. Neglecting radiation in the vacuum section,
find the temperature of the rod at x=L/2.

Hint: This problem can be viewed as inviscid flow in an insulated tube

Solution
The governing differential equation can be obtained two ways:

1. Starting from a slice of the rod, the system at steady state, with no generation

L, ar T
% z+dzx
—_—
% %
pPAuc T |

« _.i:‘.;‘r.rs_Tl

E.in - E:)ut

=0

I
[

pAuc, T| —pAuc, T

+ —kAd—T
X+AX dX

Hoes
)

Take the limit as Ax goes to zero

X+AX J

Divide by A, Ax
dT

T|x+Ax T|>< kA[dX
+
AX AX

_ar
dx

X+AX

=0

-puc,



(dT dr

] W Tl X |y n  OX dT  d°T
lim| —puc, —X&x X 4 k X2 1=—puc k
wso| P AX AX P dx dx?

Starting from the general energy conservation given by equations 6.28a and 6.28b.
o | oT T T ou v . [(auY (av) || . :
PC U—+V—|=K| ——+— |+uy| =+ | +2|| = | t| = +q
ox oy ox™ oy oy oOXx OX oy

This problem is 1-D with constant velocity and no generation, reducing the equation to

C ud_T—kﬂ
P dx dx?

or equivalently,
dT _udr o

dx? a&_

Note that if any convection in the radial direction were present in this problem, this

equation would have failed to capture that!

This is a second order ordinary differential equation. Solving:

Convert
/12_21:0 T(X):C1+C2e;X
@ check
z[z—ﬂjzo eT . %
a => —2:—2C29a
dx a
A=0 5 "
_Ed_T—_u_C e;X
a=4 a dx al
@ ok

Applying boundary conditions
1) T(x=0)=0

0=

C, +C,

2) T(x=L)=TL



Cl_ TLuL
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T(x)=T, T
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The midpoint temperature is then

uL puc,L
L 1-e2 1-e
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