CS 164 Programming Languages and Compilers Handout 9-sol
Midterm I Solutions

e Please read all instructions (including these) carefully.

e There are six questions on the exam, some with multiple parts. You have 1:20 to work on the
exam.

e The exam is closed book, but you may refer to your four sheets of prepared notes.

e Please write your answers in the space provided on the exam, and clearly mark your solutions.
You may use the backs of the exam pages as scratch paper. Please do not use any additional
scratch paper.

e Solutions will be graded on correctness and clarity. Each problem has a relatively simple and
straightforward solution. You may get as few as 0 points for a question if your solution is far
more complicated than necessary. Partial solutions will be graded for partial credit.

NAME:

SID or SS#:

Circle the time of your section: 9:00 10:00 11:00 12:00

1:00 2:00 3:00 4:00

‘ Problem ‘ Max points ‘ Points

1 15
2 15
3 25
4 10
5 25
6 10
| TOTAL | 100

Spring 00 pagel of 8

CS 164 Programming Languages and Compilers Handout 9-sol

1. First and Follow Sets (15 points)

Consider the following three grammars

1. A — BC First(A) = { = } Follow(A) = { =, $}
B — Az|z First(B) = { = } Follow(B) = { y }
C — yCly First(C) = { y } Follow(C) = { z, $ }

2. A — BC First(A) ={ z, y } Follow(A) = { =, $}
B — Az|z|e First(B) = { z, y,e¢ } Follow(B) ={ 1y}
C — yCly First(C) = { y } Follow(C) = { =, $ }

3. A — BC First(A) = { z, y, ¢ } Follow(A) ={ =z, $}
B — Az|z|e First(B) = { z, y, ¢ } Follow(B) ={=z, 9y, $}
C — yClyle First(C) = { y, ¢ } Follow(C) ={ =, $ }

For each of the following statements about First and Follow sets, indicate for which grammar(s)
(1, 2, or 3) the statement is correct. Each statement is correct for one or more grammars—be
sure to list all the grammars for which a statement is correct.

Note that grammar 3 is a small extension of grammar 2, which is a small extension of grammar
1. You may find it helpful to compute the First and Follow sets beginning with the simplest
grammar.

o First(A) ={z,y}={2}

o Follow(A)={%,z}={1,2,3}
Follow(B) = {$,z,y} ={ 3 }
First(C)={y}={1,2}
Follow(C) ={$,z} ={1,2,3}

[]
SN N
I

Spring 00 page 2 of 8

CS 164 Programming Languages and Compilers Handout 9-sol

2. Regular Expressions and Context-Free Grammars(15 points)

In this problem we will show that every regular language is also a context-free language. The
proof is to construct for every regular expression an equivalent context-free grammar. A regular
expression is equivalent to a context-free grammar if they generate the same language.

We will do the first case for you; the problem is to show how to do two other cases. Consider the
regular expression AB. Assume that we have already converted A to an equivalent context-free
grammar with start symbol S4 and that we have converted B to an equivalent context-free
grammar with start symbol Sp. Then a context-free grammar for the language AB with start
symbol S4p is

S AB — S AS B

(We also assume that the grammars for S4 and Sp share no non-terminals.)

(a) In the same style as above, what is a context-free grammar for A + B?
Assume that we have already converted A to an equivalent context-free
grammar with start symbol S, and that we have converted B to an equivalent
context-free grammar with start symbol Sg. Then a context free grammar for
A+ B with start symbol Syip is

SA+B — Sa | Sy

(b) What is a context-free grammar for A*?
Assume that we have already converted A to an equivalent context-free
grammar with start symbol S,. Then a context free grammar for A* with
start symbol S« is
Spx —> SpSpx | 3

Spring 00 page 3 of 8

CS 164 Programming Languages and Compilers Handout 9-sol

3. LR Parsing (25 points)

In these problems we describe a DFA for accepting viable prefixes of a grammar. Your assignment
is to give a grammar whose DFA recognizing viable prefixes satisfies the description.

Assume the DFA’s we describe contain LR(0) items—no lookaheads are involved. Do not aug-
ment your grammar with an extra production § — §’. Just find any grammar that works.

Many people misunderstood this problem. Reread the first paragraph carefully.
Instead of giving a grammar whose DFA for recognizing viable prefixes matches
the given description, many people gave a grammar that generates a (regular)
language that has a DFA matching the description. Notice that these answers
don’t really make sense, in any case, since there are many possible DFAs for
the same language. It is a coincidence that the languages generated by the
grammars for parts (a) and (b) happen to have DFAs that match the descriptions.

(a) The DFA consists of one state and no transitions.

S—e¢

The state contains the item S — .

(b) The DFA consists of two states s; and sp and there is one transition from the start state
s1 to s9.

S—a

State s; contains the item S — .a and state sy contains the item S — a.

(c) The DFA consists of three states s1, so, and s3. There is one transition from the start state
s1 to s9, one transition from so to itself, and one transition from sy to s3.

There were several similar acceptable answers to this problem.
S — aS
S—aS|e

S—aS|a

The first grammar generates the empty language (it generates no finite
strings). For the first grammar, the states are

s1: S—.aS So: S —a.lS s3: S — aS.
S — .aS

The second grammar generates the language containing all strings of a’s,
and the third generates all strings of a’s of length at least 1.

Spring 00 page 4 of 8

CS 164 Programming Languages and Compilers Handout 9-sol

4. Syntax-Directed Translation (10 points)

For the following grammar for arithmetic expressions define a syntax-directed translation that
records the sign (POS or NEG) of each subexpression E in the attribute E.sign. Write your
semantic actions to the right of the corresponding production. You may assume that all integers
are non-zero (so you don’t need to worry about the sign of zero).

E — unsigned_integer
{ E.sign =PO0S; }

| +E
{ E.sign =E;.sign; }

| —E
{ E.sign = (E;.sign ==P0S) ? NEG : POS; }

‘ E1 * E2
{ E.sign = (E;.sign == Es.sign) 7 POS : NEG; }

Common mistakes in answers to this problem were:

e Not realizing that a sign of an unsigned integer is always POS.

e Assuming that +E and -E force the sign of the result to be POS and NEG
respectively (the grammar is for arithmetic expressions, after all).

e Using operations on POS and NEG without defining them.
e Getting the sign logic in Fj * Ep wrong.

Spring 00 page 5 of 8

CS 164 Programming Languages and Compilers Handout 9-sol

5. LL Parsing (25 points)

Consider the following grammar:

aS | Ab
XYZ|e
cS |e

dsS | e

eS

N < ™ ox W»n
R A A

(a) Give an LL(1) parsing table for this grammar.

Even though it was not required in this exercise it is best to first
compute the First and Follow sets for the non-terminals:

First Follow
S | {a,b,c,d,e} || {3,b,d,e}
A | {c,d,e, €} {b}
X | {c, €} {d,e}
Y | {d, €} {e}
Z | {e} {o}

Based on this information we can write the LL(1) parsing table as follows:

a b c d e $

S|S—>aS|S—>Ab| S — Ab S — Ab S — Ab
A A—e |[AXYZ|A—>XYZ | A— XYZ
X X —cS X —e X —e¢
Y Y —»dS Y —e
Z Z —eS

The X — ¢ entries are put in the columns corresponding to the Follow(X).
Same for the ¢ productions of A and Y.

Somewhat tricky were the entries for A — XY Z that are placed in the
columns in First(XY Z) = {c,d,e} and the entries for S — Ab that are placed
in the columns in First(Ab) = {b,c,d,e}.

This grammar is LL(1) since all the entries in the table are uniquely
defined.

Spring 00 page 6 of 8

CS 164 Programming Languages and Compilers Handout 9-sol

(b)

Give a leftmost derivation of the string aebb.

A leftmost derivation of the string aebb is

S —aS — aldb— aXYZb— aYZb — aZb — aeSb — aeAbb — aebb

Since the grammar is LL(1) (no conflicts in the above parsing table) the
grammar is not ambiguous and this leftmost derivation is unique.

Show that if we add the production X — bS that the grammar is no longer LL(1).

If we add the production X — bS then the following First and Follow sets
change:

First(X) = {b,c,e}

First(A) = {b,c,d,e, e}

Since b € First(X) we have that b € First(XYZ) and we will therefore have a
conflict in the LL(1) parsing table. The entry at [A,b] will contain both
entries A - ¢ and A - XY Z. This makes the grammar not LL(1).

Note that the grammar is still unambiguous!

Spring 00 page 7 of 8

CS 164 Programming Languages and Compilers Handout 9-sol

6. Error Recovery (10 points)

Consider the following grammar for strings of ab’s:
A—abA|e

(a) Augment the grammar with productions that allow a parser to recognize all erroneous
strings as well as valid strings. The non-terminal ERROR should derive the suffix starting

at the first erroneous terminal. More precisely, in the case that the input is erroneous, then
ERROR should

e derive a suffix s of the string such that if s is deleted, then the string is in the original
language, and
e derive the shortest such suffix.

You may use as many new productions and non-terminals besides ERROR as you like.
Assume that a and b are the only possible terminals.

A —> abA|e|ERROR
ERROR — a|DbX|aaX
X — aX|bX]|e

(b) What language does your augmented grammar generate?

The augmented grammar generates (a + b)*.

Common mistakes in answers to this problem were:
e changing the existing productions;
e treating ERROR as a terminal rather than a non-terminal;
e deriving a prefix rather than a suffix of the string;

e writing productions for ERROR that didn’t cover all possible erroneous
suffixes.

Spring 00 page 8 of 8

