CS 164 Programming Languages and Compilers Handout 18

Midterm II Solution

e Please read all instructions (including these) carefully.

e There are 5 questions on the exam, all with multiple parts. You have 80 minutes to work on the
€xam.

e The exam is closed book, but you may refer to your four sheets of prepared notes.

e Please write your answers in the space provided on the exam, and clearly mark your solutions.
You may use the backs of the exam pages as scratch paper. Please do not use any additional
scratch paper.

e Solutions will be graded on correctness and clarity. Each problem has a relatively simple and
straightforward solution. You may get as few as 0 points for a question if your solution is far
more complicated than necessary. Partial solutions will be graded for partial credit.

NAME:

SID or SS#:

Class account:

‘ Problem ‘ Max points ‘ Points

1 15
2 25
3 25
4 20
5 15
| TOTAL | 100 |

Fall 2000 page 1 of 10

CS 164 Programming Languages and Compilers Handout 18

1. Parameter Passing (15 points)

Consider the following program, written in a C-like syntax:

f(x) { return g(x = x * 2); }

g(x) { let y =1 in { h(y); return x + y + x; }}
h(x) { x = x + 5; return 0; }

main() { print(£(7)); }

Note that each function is called in one place. Assume that each function call can be used with
a different parameter passing mechanism: by value, by reference, or by name.

(a)

For each of £, g, and h, state what calling convention should be used for the program to
print 29.

This problem turns out to have many correct answers. The simplest solution
for this part is that all three are call-by-value.

For each of £, g, and h, state what calling convention should be used for the program to
print 34.

Any solution where h is call-by-reference and g is not call-by-name is
correct.

For each of f, g, and h, state what calling convention should be used for the program to
print 43.

Any solution where h is not call-by-reference and g is call-by-name is
correct.

Fall 2000 page 2 of 10

CS 164 Programming Languages and Compilers Handout 18

2. Type Checking and Semantics (25 points)

In this problem we consider adding a for loop to Cool. The syntax is:

for (id:T <- e_init; e_test; e_update) e_body rof

A for expression first initializes the identifier id to the value of the expression e _init. It then
evaluates the expression e_test. If the value of e_test is false, the loop terminates. If the value
of e_test is true, then e body is evaluated and then e_update is evaluated. Loop execution
then continues by evaluating e_test again, and so on.

The type of a for expression is Object. The identifier id is visible in e _test, e update, and
e_body.

(a) Give a type checking rule for for expressions.

0, M, C |- e_init:T1

Tl <= T?

0[T>/id], M, C |- e_test:Bool
0[T’/id], M, C |- e_update:T2
0[T’/id]l, M, C |- e_body:T3

0, M, C |- for(id:T<-e_init; e_test; e_update) e_body rof: Object

Fall 2000 page 3 of 10

CS 164 Programming Languages and Compilers Handout 18

(b) for expressions are equivalent to some combination of other Cool constructs. Show how to
translate a for into Cool without for.

(let id:T<-e_init in
while e_test loop {
e_body;

e_update;

} pool

)

Fall 2000 page 4 of 10

CS 164 Programming Languages and Compilers Handout 18

3. Global Analysis (25 points)

Consider the following three-address code fragment:

1. L1: a=b+c

2. L2: b=>bx*x 2

3. if (b < d) goto L3
4. f=b-a

5. if (f < d) goto L1
6. L3: g=7+f

7. a=g-6

8. if (a > d) goto L2
9. e=g

10. f=ex*a

(a) Identify the basic blocks in the above fragment. Assign each basic block a number, and
show the set of lines contained within each block. For example, if you believed that the two
multiplications and the two additions formed one basic block, you might write “basic block
#1: {1, 2,6, 10 }”. Please refer to the instruction numbers given above in your answer.

i {1}

i {23}
ii. {4,5)
iv. {6,7,8}
v. {9,10 }

Fall 2000 page 5 of 10

CS 164 Programming Languages and Compilers Handout 18

(b) Draw the control flow graph for the above fragment. Between each pair of instructions
within a basic block, write the set of live variables at that program point. On each edge
between basic blocks as well as at each entry and exit point of the control flow graph, write
the set of live variables at that point. Assume that only f is live on exit from the entire
code fragment.

b,c,d, f}
a=b+c
{a,b,c,d, f} \¢{//'_\\\\
b=b* 2
{a,b,c,d,f}
if (b<d)
{a, b, <, d}
f=b-a {a,b,c,d, f}
{b,c,d,f} {b,c,d,f}
if (f<d)
{b, &\d, f}
g=7+f
{b,c,d,f,g}
a=g- 6
{a,b,c,d, f, g}
if (a>d)
{a, g} v
e=g
{a, e}
f=e*a
{f}

Fall 2000 page 6 of 10

CS 164 Programming Languages and Compilers Handout 18

4. Register Allocation (20 points)

Each part of this question describes a set of graphs. State whether the graph coloring heuristic
used for register allocation will successfully color every graph in the set using k or fewer colors. If
you believe the coloring heuristic can color the graphs, given an explanation why. If you believe
the heuristic cannot color the graphs, give an example graph in the set that can’t be colored.

(a)

Graphs where every node has fewer than k£ neighbors.

As mentioned during the exam, the question is whether the heuristc can
succeed without spilling. The graph coloring heuristic has two phases: in
phase one, nodes are deleted from the graph and placed on a stack; in phase
two, the nodes are removed from the stack and colored one at a time. If
phase one succeeds in removing all of the nodes from the graph, then phase
two always succeeds. Thus, the problem reduces to arguing whether or not
phase one can remove all nodes from the graph.

For the first part, yes, the heuristic can color all such graphs. The
graph coloring heuristic works by repeatedly selecting nodes with < k
neighbors and removing them from the graph. Because removing a node cannot
increase the number of neighbors of any other node, the heuristic will
succeed in removing all nodes from the graph.

Graphs where every node has at least k£ neighbors.

No. Consider the complete graph of k£ + 1 nodes (a complete graph has every
possible edge). Every node has k neighbors, so the heuristic cannot remove
any edges.

A common mistake was failing to give an example as instructed. Some people
claimed that the optimistic coloring variant of the heuristic would work,
but optimistic coloring does not work for a complete graph of size k4 1.

Graphs where only one node has & or more neighbors.
Yes. First remove all of the nodes except the one with k£ or more

neighbors. At this point there is only one node left, so it must have
zero neighbors and can be removed from the graph as well.

Some people correctly said the graph could be colored using a different
procedure, but that was not an answer to the question asked.

Graphs where at most k¥ — 1 nodes have k or more neighbors.

Yes. First remove all of the nodes that have < k neighbors in the original
graph. Now there are k¥ — 1 nodes left, so each can have at most £k — 2

Fall 2000 page 7 of 10

CS 164 Programming Languages and Compilers Handout 18

neighors; i.e., each has less than k neighbors. Thus, the heuristic can
remove all remaining nodes.

Again, some people correctly said the graph could be colored using a
different procedure, but that was an answer to a different question.

Fall 2000 page 8 of 10

CS 164 Programming Languages and Compilers Handout 18

5. Code Generation (15 points)

(a)

Assume we disallow method override in Cool. How can we simplify code generation for
method calls?

If method overriding is disallowed, dispatch pointers are no longer
necessary. We can statically determine the location of the method

to execute. In terms of code generation, dispatches consist of
jump-and-link’s to statically determined locations, rather than table
lookups followed by register jumps.

Partial credit was awarded for stating that the static dispatch construct
(@) can be eliminated, or that methods can be inlined.

Succinctly, under what circumstances can we allocate an object on the stack rather than
allocating it in the heap.

Objects that may remain live after the execution of a method must be
allocated on the heap. Otherwise, they can be stack allocated.
Common mistakes-- Claiming that objects that are only accessed in one
method are the only objects that can be stack allocated.

As implemented by coolc, the header of a Cool object consists of three words: the class
tag, a pointer to a dispatch table, and the size of the object. Outline a scheme for reducing
the size of the object header to one word, without limiting the set of Cool programs we
can compile. (For example will not accept a solution that allocates 4 bits to the class tag
and assumes there are only 16 classes in a program!)

First, we note that in Cool, every instance of a class has the same

size, dispatch pointer, and class tag. Reducing the amount of repeated
information is our goal. The easiest way to achieve this goal is to
augment dispatch tables with additional information. The tables become
class descriptors; they now contain other fields like the object size and
class tag in addition to the information normally contained in the dispatch
table. In fact, since dispatch pointers are unique to each class, it is
possible to use the dispatch pointer itself as a class tag. However, this
complicates code generation for constructs like case. One complication
with this approach is that it is not quite true that every instance of a
Cool class has the same size. Cool Strings are the single exception. If
strings are treated as special cases, this approach will still work.

Other strategies can be used, some of which might significantly slow down
the execution of Cool programs (for instance, some proposed solutions add

Fall 2000 page 9 of 10

CS 164 Programming Languages and Compilers Handout 18

another level of indirection to method dispatch).

Common mistakes: Adding a pointer to a new record that contains the class
tag, object size, and dispatch table, without noting that this record is
shared among all instances of the same class. This actually increases the
size of the Cool object header by one word.

Fall 2000 page 10 of 10

