
CS ��� Handout ��

Final Examination

� Please read all instructions �including these� carefully�

� Please print your name at the bottom of each page on the exam�

� There are nine questions on the exam� some in multiple parts� You have � hours to work on the
exam�

� The exam is closed book� but you may refer to your four sheets of prepared notes�

� Please write your answers in the space provided on the exam� and clearly mark your solutions�
You may use the backs of the exam pages as scratch paper� Please do not use any additional
scratch paper�

� Solutions will be graded on correctness and clarity� There are no 	tricky
 problems on the
exam�each problem has a relatively simple and straightforward solution� You may get as few
as � points for a question if your solution is far more complicated than necessary�

NAME
 Sam P� L� Solution

SID or SS�


Problem Max points Points

� ��

� ��

� ��

� ��

� ��

� ��

� ��

� ��

� ��

TOTAL ���

Fall �� page � of ��



CS ��� Handout ��

�� Scope ��� points�

Give a simple program that produces di�erent results if executed using lexical scoping than if
executed using dynamic scoping� Show what your program produces in both cases� Use any
reasonable and clear programming notation�

main��

var x�

proc p�

var x�

x �� ��

p����

end�

proc p�

print�x��

end�

x �� ��

p����

end�

This program prints � with lexical scope and � with dynamic scope	

Fall �� page � of ��



CS ��� Handout ��

�� Parsing ��� points�

For each of the following questions� we are looking for clarity and brevity as well as the right
idea�

�a� �� points� Give a de�nition of the term derivation� What is a left�most derivation�

Begin with the start symbol S	 At each step
 choose a non�terminal X and

replace it by Y�			Yn
 where X �� Y�			Yn is a production of the grammar	

Any sequence of such replacements is a derivation	

A left�most derivation always chooses the leftmost non�terminal for

replacement	

You could also say that a derivation ends in a string of terminals
 but

this is not required for full credit	

�b� �� points� Give one advantage of SLR��� grammars over LR��� grammars� give one advan�
tage of LR��� grammars over SLR��� grammars�

An SLR��� parser generator produces tables of practical size
 whereas an

LR��� parser generator often produces tables too large to be useful for

realistic languages	 On the other hand
 the class of LR��� grammars is

larger than the class of SLR��� grammars	

�c� �� points� Consider a bottom�up parser for a grammar with no ��productions and no single
productions �i�e�� productions with a single symbol on the right�hand side�� For an input
string with n tokens� what is the maximum number of reduce moves the parser can make�
Why�

All productions in the grammar have at least two symbols on the right�hand

side and one symbol on the left�hand side	 Thus
 every reduction reduces

the number of symbols by at least �	 Therefore
 there can be at most n � �
reductions	

Fall �� page � of ��



CS ��� Handout ��

�� ��� points�

A few years from now� fanatical graduates of CS��� have succeeded in convincing the world that
Cool should replace C�� as the object�oriented programming language of choice� Naturally� a
Cool standards committee is formed� The committee cannot leave a superior design alone and
decides that Cool needs some changes�

�a� Regular Expressions ��� points�
One of the committee members has an obsession with comments� She thinks it is ugly that
one cannot write 	��
 inside a 	��
 comment� after all� what if that is what you want to
write�

The proposal is to replace all Cool comments with the following mechanism
 A comment
begins with one of the special characters ���� or � and ends with the same special character�
Between the �rst and last character� the comment may contain any character except the �rst
�and last� character� Comments may not be nested� For example� �cool�cs�berkeley�edu�
and �Cool code rules�� are valid comments� but �This is great�� and �Help� are not valid
comments�

Write a regular expression for comments� Use any reasonable and clear notation�

The notation 
�c� means �all characters except c	�

��
������ � ��
������ � ��
������

Fall �� page � of ��



CS ��� Handout ��

Someone else on the committee feels that Cool is not expressive enough� He thinks that Cool
simply must have backtracking� The proposed backtracking mechanism has two commands


track �e�� e�� � � � � en�
back

Informally� a track command is evaluated as follows� First� e� is evaluated� If e� terminates
normally� then the result of the expression is the result of evaluating e�� If e� fails �see
below�� then e� is evaluated� If e� terminates normally� the result is the value of e�� if e�
fails� then e� is evaluated� This process continues until one of the expressions does not fail�

A back command causes a tracked computation to fail� When a back command is exe�
cuted� control is transferred to the nearest lexically enclosing track command and the next
expression is evaluated� The following example evaluates to 	�



track �begin �� back� end�
back�
��

�b� Parsing ��� points�
Consider the following very simpli�ed grammar for Cool expressions with track and back


E � if E then E else E �

j while E loop E pool

j track � ELIST

j back

ELIST � E �

j E� ELIST

Boldface denotes a keyword� capitalized words are non�terminals� and lowercase words are
terminals� A member of the committee observes that the semantics of track�e�� � � � � en� is
unde�ned if all of the expressions fail� A simple way to guarantee that at least one expres�
sion succeeds is to forbid back statements inside the last expression en� except for back
statements in �all but the last expression of� nested track statements� Rewrite the gram�
mar so that e�� � � � � en�� may contain back statements� but e

n
cannot� except for nested

track statements� where the same rule applies recursively� Your grammar should allow any
other proper nesting of expressions� Don�t use ellipses �� � � � in your grammar�

E � if E then E else E �

j while E loop E pool

j track � ELIST

j back

ELIST � F �

j E� ELIST

F � if F then F else F �

j while F loop F pool

j track � ELIST

Fall �� page � of ��



CS ��� Handout ��

�c� Type Checking ��� points�
Write a sound type checking rule for a track expression� Your rule should be reasonably
precise�it isn�t OK simply to say it has type Object� �Note
 Don�t worry about the type
of back� you don�t need it to answer this question��

A typechecking rule is easy to write using the least�upper bound operation

on Cool types�

A �� ei � Ti � �� i �� n

��������������������������������������

A �� track�e�
			
en� � lub�T�
			
Tn�

Another correct
 but less general
 answer is�

A �� ei � T � �� i �� n

���������������������������

A �� track�e�
			
en� � T

�d� Code Generation and Semantic Actions ��� points�

Write semantic actions to generate code for the original grammar �not the one you wrote�
in part �b�� For this problem� we are interested only that you generate the correct control
structure�

Your semantic actions should use attributes� Assign to attribute E�code the code for ex�
pression E� You may use any other attributes �inherited or synthesized� you wish� Show
the attribute de�nitions for each production�

Use only the following pseudo�assembly instructions in your solution


JUMP L unconditional jump to label L
JUMPF L jump to label L if the previous instruction evaluates to false
LABEL L gives the label L to the next executable instruction

You may use a function newlabel�� that returns a unique label� The code attribute is a
string� s�jjs� denotes concatenation of two strings s� and s�� To help you get started� a
partial solution for while loops is given below �the solution is partial because you may need
to add attributes�


production
 E� � while E� loop E� pool

while�top � newlabel��
while�exit � newlabel��
E��code � LABEL while�top jj E��code jj JUMPF while�exit jj

E��code jj JUMP while�top jj LABEL while�exit

If all expressions in a track command fail� the code should jump to the label ERROR�
Don�t worry about adjusting the stack or modifying registers� Do not change the grammar�

Fall �� page � of ��



CS ��� Handout ��

�This page intentionally left almost blank��

E� �� if E� then E� else E�

if	flabel � newlabel��

if	exit � newlabel��

E�	code � E�	code �� JUMPF if	flabel �� E�	code �� JUMP if	exit ��

LABEL if	flabel �� E�	code �� LABEL if	exit

E�	label � E�	label � E�	label � E�	label

E� �� while E� loop E� pool

rules given above
 plus�

E�	label � E�	label � E�	label

E �� track � ELIST

ELIST	exit � newlabel��

E	code � ELIST	code �� LABEL ELIST	exit

E �� back

E	code � JUMP E	label

ELIST �� E �

E	label � ERROR

ELIST	code � E	code

ELIST� �� E
 ELIST�

ELIST�	exit � ELIST�	exit

E	label � newlabel��

ELIST�	code � E	code �� JUMP ELIST�	exit �� LABEL E	label �� ELIST�	code

Fall �� page � of ��



CS ��� Handout ��

�� Activation Records ��� points�

Consider a program with the following lexical structure� The program is written in a lexically
scoped language with nested procedures �like Pascal�


proc P��

proc Q�proc T���

proc R��

proc S��

P�R� and S are parameterless procedures� Q takes a parameterless procedure T as a parameter�
Suppose that at run�time the following sequence of calls is made


P is called from some lexically�enclosing main program
P calls R
R calls S
S calls P
P calls R
R calls Q with S as a parameter
Q calls T
T calls S

Draw the stack of activation records present after this sequence of calls� You don�t need to show
the entire contents of the activation record�for each indicate only the name of the procedure
being activated� the control �dynamic� link for that activation record� and the access �static�
link for that activation record�

Fall �� page � of ��



CS ��� Handout ��

�This page intentionally left almost blank��

Main

S

P

R

Q

T

S

Dynamic

Links

Access 

Links

Stack grows upwards.

P

R

Fall �� page � of ��



CS ��� Handout ��

�� Cool and Type Checking ��� points�

Consider the following Cool program� In the blanks provided� you should �ll in both missing
type declarations and the types inferred by the compiler for each expression� Fill in the most
speci�c �most accurate� type possible� The �nal program should type check correctly using the
declarations you �ll in�

Each blank is the type of the expression immediately to the left� parentheses have been added
where necessary to make clear which expression is meant�

Class A is
a 
 Int �

init�x 
 Int � 
 SELF TYPE is
begin �a Int � x Int � Int � self SELF TYPE end SELF TYPE

end�

end�

Class B inherits A is
b 
 Int � � Int �

getb�� 
 Int is b Int end�

end�

Class C inherits A is
c 
 Int � � Int �

getc�� 
 Int is c Int end�

end�

class Main inherits IO is
main�� 
 A is

let y 
 Bool in
case �if �y Bool � ��in int�� Int � � Int � Bool �� Bool then

�new B� B
else

�new C� C � A
of

x 
 B � �x B �init��x B �getb��� Int �� B �
y 
 C � �y C �init��y C �getc��� Int �� C �

esac A
end A

end

end�

Fall �� page �� of ��



CS ��� Handout ��

�� �Garbage Collection� ��� points�

Garbage collect the following heap using Mark � Sweep garbage collection� Clearly indicate
which cells will be marked� and construct the free list resulting from the collection�

A

B

C

D

E

F

G

H

I

Root

Freelist nil

Marked� C
E
F
G
H
I

Free�list �� A �� B �� D

Fall �� page �� of ��



CS ��� Handout ��

�� �Data�ow Analysis and Register Allocation� ��� points�

Consider the following fragment of intermediate code


L��

x �� y � x

w �� � � x

if s � u goto L�

x �� w � u

u �� u � �

goto L�

L��

s �� w � �

L��

y �� s � x

if y � ���� goto L�

L��

�a� �� points� Draw a control� ow graph for this piece of code� Place each basic block in a
single node� be sure to include the conditionals in the basic blocks�

�b� ��� points� Annotate your control� ow graph with the set of variables live before and
after every statement �not just before and after every block��� assuming that s and
u are live at label L�� Make sure it is clear where your annotations are placed�

x <- y + x

if s = u goto L1
w <- 2 * x

y <- s + x
if y > 1000 goto L0

x <- w + u
u <- u - 1

s <- w + 1

L3
{s,u} {s,u,x,y}

{s,u,x,y}

{s,u,x} {s,u,x}

{s,u,x}

{s,u,x,y}

{s,u,x}

{u,w,x} {s,u,w}

{s,u,w,x}

{s,u,w,x}

Fall �� page �� of ��



CS ��� Handout ��

�c� ��� points� Draw the register interference graph for the intermediate code given on the
previous page�

Y U

W

S

X

Fall �� page �� of ��



CS ��� Handout ��

�� Type Checking ��� points�

Consider the following C�like expression language


e � e�!e�"

j �e

j �e

j i

In this grammar� i represents an integer� Now consider the following type language and type
rules


T � int

j pointer�T�

j array�T�

A � i 
 int
!INT "

A � e� 
 array�T� A � e� 
 int

A � e�!e�" 
 T
!ARRAY "

A � e 
 T

A � �e 
 pointer�T�
!POINTER"

A � e 
 pointer�T�

A � �e 
 T
!DEREF "

Now consider the expression ����B�!�"�� �The parentheses are included only to clarify precedence
and are not part of the expression�� Given the type assumptions A � fB 
 pointer�array�int��g�
show the type derivation for the expression� Indicate the rule you use at each step�

A �� B � pointer�array�int��

����������������������������� 
DEREF� ������������ 
INT�

A �� �B � array�int� A �� � � int

�������������������������������������������� 
ARRAY�

A �� ��B�
�� � int

������������������������������������������������������ 
POINTER�

� B�pointer�array�int�� � �� ����B�
��� � pointer�int�

Fall �� page �� of ��



CS ��� Handout ��

�� Optimization ��� points�

Consider the following fragment of intermediate code


y �� w

z �� �

v �� y � y

u �� z � �

r �� w �� � �� exponentiation ��

t �� r � v

s �� u � t

Assume that only the variable s is live on exit from this fragment� Show the result of applying
as much constant propagation� algebraic simpli�cation� common sub�expression elimination�
constant folding� and dead code elimination as possible to this code� Show the optimizations
you perform and the order in which they are applied as part of your answer� You need not show
the entire code sequence after every optimization� but you should explain clearly what changes
at each step�

w �� � �� w � w algebraic simplification�strength reduction

replace y by w copy propagation

replace r �� w � w by r �� v common subexpression elimination

replace r by v copy propagation

replace z by � constant propagation

replace ��� by � constant folding

replace u by � constant propagation

remove assignments to y
z
u
r dead code elimination

Result�

v �� w � w

t �� v � v

s �� � � t

If you wanted to get really fancy���not required for full credit���you

could continue�

t �� � � v algebraic �optimization� �see below�

replace s �� � � t by �� � v a kind of constant propagation

eliminate assignment to t dead code

Result�

v �� w � w

s �� �� � v

Most compilers will not find this last sequence of optimizations
 because

the step v � v �� � � v is not an improvement on most machines �in

other words
 � is usually slower than ��	

Fall �� page �� of ��


