CS 164 Handout 16

Final Examination

o Please read all instructions (including these) carefully.
e Please print your name at the bottom of each page on the exam.

e There are nine questions on the exam, some in multiple parts. You have 3 hours to work on the
exam.

e The exam is closed book, but you may refer to your four sheets of prepared notes.

e Please write your answers in the space provided on the exam, and clearly mark your solutions.
You may use the backs of the exam pages as scratch paper. Please do not use any additional
scratch paper.

e Solutions will be graded on correctness and clarity. There are no “tricky” problems on the
exam—each problem has a relatively simple and straightforward solution. You may get as few
as 0 points for a question if your solution is far more complicated than necessary.

NAME: Sam P. L. Solution

SID or SS#:

Problem | Max points | Points

1 10
15
50
20
20
15
35
15
9 20

| TOTAL | 200

O~ | T = | W[

Fall 94 page 1 of 15



CS 164 Handout 16

1. Scope (10 points)
Give a simple program that produces different results if executed using lexical scoping than if
executed using dynamic scoping. Show what your program produces in both cases. Use any

reasonable and clear programming notation.

main()
var x;
proc pl
var x;
X = 1;
p20);
end;
proc p2
print(x);
end;
x := 0;
p1Q);
end;

This program prints O with lexical scope and 1 with dynamic scope.

Fall 94 page 2 of 15



CS 164 Handout 16

2. Parsing (15 points)

For each of the following questions, we are looking for clarity and brevity as well as the right
idea.

(a) (5 points) Give a definition of the term derivation. What is a left-most derivation?

Begin with the start symbol S. At each step, choose a non-terminal X and
replace it by Y1...Yn, where X -> Y1...Yn is a production of the grammar.
Any sequence of such replacements is a derivation.

A left-most derivation always chooses the leftmost non-terminal for
replacement.

You could also say that a derivation ends in a string of terminals, but
this is not required for full credit.

(b) (5 points) Give one advantage of SLR(1) grammars over LR(1) grammars; give one advan-
tage of LR(1) grammars over SLR(1) grammars.

An SLR(1) parser generator produces tables of practical size, whereas an
LR(1) parser generator often produces tables too large to be useful for
realistic languages. On the other hand, the class of LR(1) grammars is
larger than the class of SLR(1) grammars.

(c) (5 points) Consider a bottom-up parser for a grammar with no e-productions and no single
productions (i.e., productions with a single symbol on the right-hand side). For an input
string with n tokens, what is the maximum number of reduce moves the parser can make?

Why?

A1l productions in the grammar have at least two symbols on the right-hand
side and one symbol on the left-hand side. Thus, every reduction reduces
the number of symbols by at least 1. Therefore, there can be at most n — 1
reductions.

Fall 94 page 3 of 15



CS 164 Handout 16

3. (50 points)

A few years from now, fanatical graduates of C5164 have succeeded in convincing the world that
Cool should replace C++ as the object-oriented programming language of choice. Naturally, a
Cool standards committee is formed. The committee cannot leave a superior design alone and
decides that Cool needs some changes.

(a) Regular Expressions (10 points)

One of the committee members has an obsession with comments. She thinks it is ugly that
one cannot write “x)” inside a “(*” comment; after all, what if that is what you want to
write?

The proposal is to replace all Cool comments with the following mechanism: A comment
begins with one of the special characters $,!, or @ and ends with the same special character.
Between the first and last character, the comment may contain any character except the first
(and last) character. Comments may not be nested. For example, !cool@cs.berkeley.edu!
and @Cool code rules!@ are valid comments, but !This is great!! and $Help! are not valid
comments.

Write a regular expression for comments. Use any reasonable and clear notation.

The notation [“c] means '"all characters except c."

(oI | o(elmelxe) | ($L81x$)

Fall 94 page 4 of 15



CS 164

Fall 94

Handout 16

Someone else on the committee feels that Cool is not expressive enough. He thinks that Cool
simply must have backtracking. The proposed backtracking mechanism has two commands:

track (eq,eq,...,e,)

back

Informally, a track command is evaluated as follows. First, eq is evaluated. If e; terminates
normally, then the result of the expression is the result of evaluating e;. If ey fails (see
below), then ey is evaluated. If e; terminates normally, the result is the value of eq; if ey
fails, then es is evaluated. This process continues until one of the expressions does not fail.
A back command causes a tracked computation to fail. When a back command is exe-
cuted, control is transferred to the nearest lexically enclosing track command and the next
expression is evaluated. The following example evaluates to “17:

track (begin 3; back; end,
back,
1)
Parsing (10 points)
Consider the following very simplified grammar for Cool expressions with track and back:
E — if E then E else E fi
| while E loop E pool
| track ( ELIST
| back

ELIST — E)
| E, ELIST

Boldface denotes a keyword, capitalized words are non-terminals, and lowercase words are
terminals. A member of the committee observes that the semantics of track(eq,...,ey,) is
undefined if all of the expressions fail. A simple way to guarantee that at least one expres-
sion succeeds is to forbid back statements inside the last expression ¢,, except for back
statements in (all but the last expression of) nested track statements. Rewrite the gram-
mar so that eq,...,e,_1 may contain back statements, but e, cannot, except for nested
track statements, where the same rule applies recursively. Your grammar should allow any
other proper nesting of expressions. Don’t use ellipses (...) in your grammar.

E — if E then E else E fi
| while E loop E pool
| track ( ELIST
| back

ELIST — F)
| B, ELIST
F — if F then Felse F fi

| while F loop F pool
| track ( ELIST

page 5 of 15



CS 164

()

Fall 94

Handout 16

Type Checking (10 points)

Write a sound type checking rule for a track expression. Your rule should be reasonably
precise—it isn’t OK simply to say it has type Object. (Note: Don’t worry about the type
of back; you don’t need it to answer this question.)

A typechecking rule is easy to write using the least-upper bound operation
on Cool types:

A |- track(el,...,en) : lub(T1,...,Tn)

Another correct, but less general, answer is:

A |- track(el,...,en) : T

Code Generation and Semantic Actions (20 points)

Write semantic actions to generate code for the original grammar (not the one you wrote)
in part (b). For this problem, we are interested only that you generate the correct control
structure.

Your semantic actions should use attributes. Assign to attribute F.code the code for ex-
pression £. You may use any other attributes (inherited or synthesized) you wish. Show
the attribute definitions for each production.

Use only the following pseudo-assembly instructions in your solution:

JUMP L. unconditional jump to label L
JUMPF I, jump to label L if the previous instruction evaluates to false
LABEL L gives the label L to the next executable instruction

You may use a function newlabel() that returns a unique label. The code attribute is a
string; s1||s2 denotes concatenation of two strings sl and s2. To help you get started, a
partial solution for while loops is given below (the solution is partial because you may need
to add attributes):

production: E; — while E, loop E3 pool

while.top = newlabel()

while.exit = newlabel()

Ei.code = LABEL while.top || Ez.code || JUMPF while.exit ||
Es.code || JUMP while.top || LABEL while.exit

If all expressions in a track command fail, the code should jump to the label ERROR.
Don’t worry about adjusting the stack or modifying registers. Do not change the grammar.

page 6 of 15



CS 164

Fall 94

Handout 16

(This page intentionally left almost blank.)

E1 -> if E2 then E3 else E4
if.flabel = newlabel()
if.exit = newlabel()
El.code = E2.code || JUMPF if.flabel || E3.code || JUMP if.exit ||
LABEL if.flabel || E4.code || LABEL if.exit
E2.1label = E3.label = E4.1abel = El.label

E1 -> while E2 loop E3 pool
rules given above, plus:
E2.label = E3.label = El.label

E -> +track ( ELIST
ELIST.exit = newlabel()

E.code = ELIST.code || LABEL ELIST.exit
E -> back

E.code = JUMP E.label
ELIST -> E )

E.label = ERROR
ELIST.code = E.code

ELIST1 -> E, ELIST2
ELIST2.exit = ELIST1.exit
E.label = newlabel()
ELIST1.code = E.code || JUMP ELIST1.exit || LABEL E.label || ELIST2.code

page 7 of 15



CS 164 Handout 16

4. Activation Records (20 points)

Consider a program with the following lexical structure. The program is written in a lexically
scoped language with nested procedures (like Pascal):

proc P()

proc Q(proc T())

proc R()

proc S()

P, R, and 5 are parameterless procedures; () takes a parameterless procedure T as a parameter.
Suppose that at run-time the following sequence of calls is made:

P is called from some lexically-enclosing main program
P calls R

R calls S

S calls P

P calls R

R calls Q with S as a parameter

Qcalls T

T calls S

Draw the stack of activation records present after this sequence of calls. You don’t need to show
the entire contents of the activation record—for each indicate only the name of the procedure
being activated, the control (dynamic) link for that activation record, and the access (static)
link for that activation record.

Fall 94 page 8 of 15



CS 164 Handout 16

(This page intentionally left almost blank.)

S
T
Dynamic 0 Access
Links R Links
P
S
R Stack grows upwards.
P
Main

Fall 94 page 9 of 15



CS 164

5. Cool and Type Checking (20 points)

Consider the following Cool program. In the blanks provided, you should fill in both missing
type declarations and the types inferred by the compiler for each expression. Fill in the most
specific (most accurate) type possible. The final program should type check correctly using the

declarations you fill in.

Each blank is the type of the expression immediately to the left; parentheses have been added

where necessary to make clear which expression is meant.

Fall 94

Class A is

a: Int;

init(x : Int ) : SELF_TYPE is
begin (a Int — x Int ) Int;self SELF.TYPE end SELF.TYPE

end;
end;
Class B inherits A is
b: Int «— 1 Int;
getb(): Int is b Int end;
end;
Class C inherits A is
c: Int «— 2 Int;
getc() : Int is ¢ Int end;
end;
class Main inherits 10 is
main() : A is
let y : Bool in

case (if (y Bool — ((indnt() Int = 0 Int)

(new B) B
else
(new C) C) A
of
x: B = (x B .nit((x
y: C= (y C.init((y
esac A
end A

end

end;

eth()) Int )
ete()) Int )

Handout 16

Bool )) Bool then

|2 |

page 10 of 15



CS 164 Handout 16

6. (Garbage Collection) (15 points)

Garbage collect the following heap using Mark & Sweep garbage collection. Clearly indicate
which cells will be marked, and construct the free list resulting from the collection.

Frediss ——= nil

Root

(=

Marked: C,E,F,G,H,I

Free-list -> A -> B -> D

Fall 94 page 11 of 15



CS 164 Handout 16

7. (Dataflow Analysis and Register Allocation) (35 points)

Consider the following fragment of intermediate code:

LO:

X <-y +x
w<- 2 *x

if s = u goto L1
x <-w +u
u<-u-1

goto L2

L1:

s <-w+1

L2:

y <- 8 +Xx
if y > 1000 goto LO
L3:

(a) (5 points) Draw a control-flow graph for this piece of code. Place each basic block in a
single node; be sure to include the conditionals in the basic blocks.

(b) (15 points) Annotate your control-flow graph with the set of variables live before and
after every statement (not just before and after every block!), assuming that s and
u are live at label L3. Make sure it is clear where your annotations are placed.

{sux.y}

{sux} | xX<-y+X
{suw3—=W < 2%

|f S= ugoto L1
{s,uw,x} —
{uw,x} \S,U,W}
i X<-W+u
s<-w+1 {S,U,X} —>u<_u_1
{sux} /{ s,u,x}
y <-S+X

{suX.y} —Tify > 1000 goto LO

Au} {s,ux,y}

L3

Fall 94 page 12 of 15



CS 164 Handout 16

(c) (15 points) Draw the register interference graph for the intermediate code given on the
previous page.

Fall 94 page 13 of 15



CS 164 Handout 16

8. Type Checking (15 points)

Consider the following C-like expression language:

&e

e — el[eg]
|
| xe
|

i

In this grammar, ¢ represents an integer. Now consider the following type language and type

rules:

T — int
|  pointer(T)
| array(T)
_— INT
A :int [ ]
At ey rarray(T) AF ey :int
ARRAY
AbFefes]: T [ARRAY]
AFe:T
POINTFE
AF &e : pointer(T) PO ul
A I e: pointer(T
e : pointer(T) (DEREF]

Ak xe: T

Now consider the expression &((*B)[1]). (The parentheses are included only to clarify precedence
and are not part of the expression.) Given the type assumptions A = {B : pointer(array(int))},
show the type derivation for the expression. Indicate the rule you use at each step.

————————————————————————————— [DEREF] =------------ [INT]
A |- #B : array(int) A |- 1: int
———————————————————————————————————————————— [ARRAY]
A |- (xB)[1] : int
—————————————————————————————————————————————————————— [POINTER]

{ B:pointer(array(int)) } |- &((*B)[1]) : pointer(int)

Fall 94 page 14 of 15



CS 164 Handout 16

9. Optimization (20 points)

Consider the following fragment of intermediate code:

n B e < N

*y
+ 2
** 2 (* exponentiation *)
+ v
* €

1]
£ H = N< b =

Assume that only the variable s is live on exit from this fragment. Show the result of applying
as much constant propagation, algebraic simplification, common sub-expression elimination,
constant folding, and dead code elimination as possible to this code. Show the optimizations
you perform and the order in which they are applied as part of your answer. You need not show
the entire code sequence after every optimization, but you should explain clearly what changes
at each step.

Wokk 2 => W oxy algebraic simplification/strength reduction
replace y by w copy propagation

replace r :=w * w by r = v common subexpression elimination

replace r by v copy propagation

replace z by 4 constant propagation

replace 4+2 by 6 constant folding

replace u by 6 constant propagation

remove assignments to y,z,u,r dead code elimination

Result:

V IS WX W
t :=v+v
s :=6 x t

If you wanted to get really fancy---not required for full credit---you
could continue:

t =2 % v algebraic "optimization" (see below)
replace s := 6 * t by 12 *x v a kind of constant propagation
eliminate assignment to t dead code

Result:

V i=W kW

8 := 12 x v

Most compilers will not find this last sequence of optimizations, because
the step v + v => 2 * v is not an improvement on most machines (in
other words, * is usually slower than +).

Fall 94 page 15 of 15



