CS 164 Programming Languages and Compilers Handout 13

Midterm I

e Please read all instructions (including these) carefully.

e There are six questions on the exam, each worth between 15 or 20 points. You have 3 hours to
work on the exam.

e The exam is closed book, but you may refer to your four sheets of prepared notes.

e Please write your answers in the space provided on the exam, and clearly mark your solutions.
You may use the backs of the exam pages as scratch paper. Please do not use any additional
scratch paper.

e Solutions will be graded on correctness and clarity. There are no “tricky” problems on the
exam—each problem has a relatively simple and straightforward solution. You may get as few
as 0 points for a question if your solution is far more complicated than necessary.

NAME: Sample solution

SID or SS#:

‘ Problem ‘ Max points | Points

1 20
2 20
3 20
4 20
5 20
6 15
| TOTAL | 115

Fall 95 page 1 of 12

CS 164 Programming Languages and Compilers Handout 13

1. Overloading Resolution (20 points)
This problem considers the design of an overloading mechanism for a small, C-like language.
The grammar of the language is:

Program — Def; Program|e
Def — funid(id:type,...,id: type):type = Expr
Expr — integer|id|funid(E4,...,En) |E4+E|&E| +E

There are two disjoint classes of identifiers: function identifiers (funid’s) and data identifiers
(id’s). The scope of a function identifier is from the point of definition to the end of the program.
Data identifiers are local to a function definition. The types of the language are:

T — Int | Pointer(T)

The operation &e takes the address of e and *e dereferences the pointer e. The + operator adds
a pair of integers. A function f may have many different definitions, but the number and/or
types of the arguments for each definition must be distinct. For example, there can be functions
f(int,int) : int and £(int, pointer(int)): int, but there cannot be two functions f
with argument types £ (int,int).

Fill in the skeleton algorithm for typechecking and overloading resolution given on the next
page. Add arguments to the functions if necessary; you should decide and clearly state what, if
anything, the functions return. Use any clear programming notation. You may assume you have
a symbol table implementation with reasonable operations. Focus on computing the types—
don’t worry about what to do if identifiers are undeclared, or type checking fails, or any other
error condition. In a case branch, you may refer to the symbols on the left-hand side of the =>.
For example,

el + e2 => ... your computation using el and e2 ...

Fall 95 page 2 of 12

CS 164 Programming Languages and Compilers

main(e) = /* main is called with the program to typecheck */
{
fnenv = new FnEnvironment;
tc_program(e, fnenv)
} /* Note: The error checking is not required for full credit*/

tc_program(e, fnenv) =
{
case e of
D; P => tc_def(D, fnenv); tc_program(P, fnenv);

epsilon => /* done */

}

tc_def(e, fnenv) =
{
case e of
funid(idl : typel,...,idn : typen) : restype = expr =>

fnenv->add(funid, (typel, ..., typen), restype);
idenv = new IdEnvironment;
for i = 1 .. n: idenv->add(idi, typei);
bodytype = tc_expr(expr, idenv, fnenv);
if bodytype != restype then error('bad type");

}

type tc_expr(e, idenv, fnenv) =
{
case e of
integer => return int_type;

id => return idenv->lookup(id);

funid(el,...,en) =>
for i = 1 .. n: etypei = tc_expr(ei, idenv, fnenv);

// get list of definitions for funid
allfns = fnenv->lookup(funid);
foreach fndef in allfns:
if fndef.arguments = (etypel, ..., etypen) then
return fndef.restype;
error("No matching function");

el + e2 =>
atypel = tc_expr(el, idenv, fnenv);
atype2 = tc_expr(e2, idenv, fnenv);
if atypel != int_type || atype2 != int_type then
error("Bad add");

Fall 95

Handout 13

page 3 of 12

CS 164 Programming Languages and Compilers

return int_type;

&el =>
ptype = tc_expr(el, idenv, fnenv);
return pointer(ptype);

*el =>
stype = tc_expr(el, idenv, fnenv);
if stype = pointer(x) then return x
else error("Bad pointer dereference");

Fall 95

Handout 13

page 4 of 12

CS 164 Programming Languages and Compilers Handout 13

2. Attribute Grammars (20 points) The following grammar defines a small functional language
E — (fun id:type E) | (E E) | int | id

The notation (fun id: type E) defines a function where argument id is declared to have type
type. The types for this language are:

Type ::= Int | Type — Type
The type rules are:

A|_€1:t1—>t2
Alz) =t 1 is an integer Alz + ti] ety Albey:ity
Abz:t Abid:Int AF (funz :t; e) ity =ty Al (e1 e2) 1 2

Give an attribute grammar that assigns the type of an expression e to the attribute e.type.
You may assume that every variable in the expression is introduced by an enclosing fun x
If there is a type error in e, then assign e.type the value wrong. You may use any reasonable
and clear pseudo-code notation for the rules.

EO -> (fun id : type E1)
{ El.env = E0.env U { (id, type) };
EO.type =
if El.type == wrong then wrong
else type -> El.type;

EO -> (E1 E2)
{ El.env = EO.env; E2.env = EO.env;
EO.type =
if El.type == E2.type -> x then x
else wrong;

EO -> int { EO.type = int; }
EO -> id { EO.type = t such that (id, t) is in EO.env, or wrong

if no such pair in EO.env

}

Fall 95 page 5 of 12

CS 164 Programming Languages and Compilers Handout 13

3. Polymorphism (20 points)

(a) This part uses the same language as the previous question, except the type declarations are
omitted. Give principal types for each of the following functions:

(fun z (fun y z(y)))
(0 = pf)—=a—p

(fun x (fun y ((x y) y)))
(o —sa—=p)sa—p

(fun z (fun x (x (fun y (y 2)))))
a= (((a=p)=0)=7) =7

(b) Give a most general unifier for the following system of type equations:

T = «
= B=0—=)
(6 —0)—0 = 7

ot

(v=v) =2 (=)

(=7 = (=7)= (=7
(=7 =(=7)= (=7

2 3 ™ 9
b4 44U

Fall 95 page 6 of 12

CS 164 Programming Languages and Compilers Handout 13

4. Cool Type Checking (20 points)

Typecheck the following simple Cool fragments, giving the proof trees. Show the structure of the
proof and the types of all subexpressions; we don’t expect you to show (or remember!) exactly
all the side conditions of the rules. Any nodes of the tree that are type errors should be clearly
indicated. You should assume that the type of any such nodes is Object (you may thus get
cascading errors).

(a) Recall copy is a method of the Object class; copy has signature copy(): SELF_TYPE.

let x : Int <- 3, y : Int in

x.copy() + y
end

[z:Int,y:Int]Fx : Int
[z:Int,y:Int]tx.copy() : Int[z: Int,y: Int]Fy : Int
F3:1Int [z :Int,y:Int]Fx.copy() + y : Int
Flet x: Int <- 3, y : Int in x.copy() + y end : Int

(b) Recall concat is a method of the String class; concat has signature concat(String)
String. For this question, show only proof trees for features in class B.

class A is
al : Int;
mi(x : String): String is
x.concat ("fun")
end;
end;

class B inherits A is
a2 : A <- new SELF_TYPE;
mi(y : String): String is
self@A.m1("this ".concat(y))
end;
end;

(Unimportant environment information is omitted)

[al: Int,a2 : A] F new SELF_TYPE : SELF_TYPEp
[al:Int,a2: A]F a2 : A <- new SELF_TYPE ;

[y : String]t "this " : Stringl[y:String]Fy : String
[y : String] - self : SELF_TYPEgp [y : String] - "this ".concat(y) : String

[y : String] - selfA.m1("this ".concat(y)) : String

Fmi(y : String) : String is ...end ;

Fall 95 page 7 of 12

CS 164 Programming Languages and Compilers

(c) Show proof trees for all features of A.

class A is
al : Int <- "fun";
mi(x : A): SELF_TYPE is
begin
x.ml(x+1);
X5
end
end;
end;

(Unimportant environment information is omitted)

F7 fun” : String
[al:Int]Fal : Int <- "fun" ; FRROR

[t:AlFx : A[z:A]JF1 : Int
[z:AlFx : Alz:AlFx+ 1 : ObjectFRROR

[z:AlFx.mi(x+1) : ObjectFRROR [z:AlFx :

Handout 13

[z: A]F begin x.m1(x+1); x; end : A

Fmi(x : A): SELF_TYPE is ... end ;FRROR

Fall 95

page 8 of 12

CS 164 Programming Languages and Compilers Handout 13

5. Code Generation (20 points)

In class we described how to generate stack machine code for the following language:

P — D;P|D
D — def id(ARGS)=E;
ARGS — id, ARGSlid
E — int|id|if E; = Ep then E3 else Ej |

Ey +Ez | Ey — Eo | id(E4,...,Ep)

You may assume that within a function body, the arguments to the function are named arg1,
arg?2, etc., with the index giving the position in the function’s argument list. You may also assume
that functions are prefixed by fun; e.g., funfib, funfac, etc. Thus, it is possible to distinguish
integer arguments and function names syntactically.

The activation record for a function invocation funX(argi,...,argn) has the form shown below.
Every activation record entry is 4 bytes long. Note that the order of arguments in the AR is
different from that given in lecture.

high old low
address fp argl e argn ra address

(I

Use the following subset of MIPS assembly in answering this question. Register names are
prefixed with a “$”. Use $fp for the frame pointer, $sp for the stack pointer, and $a0 for the
accumulator. You may use any register names you wish for temporary values.

Current fp

instruction | meaning
addiu $r1 $r2 imm | $rl := $r2 + imm
lw $r1 offset($r2) | $rl := load from location $r2 + offset
sw $r1 offset($r2) | store $r1 at location $r2 + offset
label: | “label” refers to address of next instruction
la $r1 label | load the address “label” into $rl
jal label | jump and link to address “label”
jalr $r1 | jump and link to address in $rl
.word imm | reserves a word of storage; initialized to integer “imm

”

Fall 95 page 9 of 12

CS 164 Programming Languages and Compilers Handout 13

(a) Suppose this language is extended with global variables by adding a production D — def id.
Any reference to an identifier that does not appear in the enclosing function’s argument list is
assumed to be global. All global variables must be declared by the program. Global names begin
with the prefix global. All globals are integers and are initialized to 0. Define a code generation
function for the productions D — def id and E — id.

D -> def id E -> id
emit "{id}: .word 0" if id = "argi":
offset = 4 *x (n + 1 - i)
emit "lw $a0 {offset}($fp)"
else if id = "globalxxx":
emit "la $a0 {id}"
emit "lw $a0 0($al)"

Note: in the strings above, {x} gets replaced by the value of variable x.

(b) Now suppose, in addition, first class functions are added to the language. The function call
syntax becomes E — Eg(Eq,...,Ep), so that the function to be called is a computed value. The
semantics for function call becomes

e Evaluate Eg,Eq,...,Ey in that order, giving values vg, vy, ..., v,.

e Compute vg(vy,...,vy,).
In an expression, the use of an identifier naming a function loads the address of the function
into the accumulator. Define a code generation function for the productions E — id and E —

Eo(E1,...,En). Assume that the called function removes the activation record from the stack
and that the stack pointer always points to the first unused word.

E -> id E -> EO(E1, ..., En)

if id = "argi": gen code for EO
offset = 4 * (n + 1 - i) emit "sw $a0 O($sp)"
emit "lw $a0 {offset}($fp)" emit "sw $fp -4($sp)"

else if id = "funxxx": emit "addiu $sp $sp -8"
emit "la $a0 {id}" for i = 1..n:

else if id = "globalxxx": gen code for Ei
emit "la $a0 {id}" emit "sw $a0 0($sp)"
emit "lw $a0 0($a0)" emit "addiu $sp $sp -4"

offset = (n + 2) * 4

emit "lw $a0 {offset}($sp)"
emit "jalr $a0"

emit "addiu $sp $sp 4"

Fall 95 page 10 of 12

CS 164 Programming Languages and Compilers Handout 13

6. Runtime Organization (15 points)

Consider a C-like language with functions, integers, and vectors of integers. Vectors are declared
with constant sizes (e.g., int A[100]). Vector values are implemented as pointers to a block
of memory containing the vector elements. When vectors are passed as arguments or returned
as the result of functions, it is the pointer that is passed or returned. Thus, vectors are always
passed by reference. Integers are always passed by value. Assume that values are communicated
between functions only via function arguments and results (i.e., the language has no global
variables).

For each of the following combinations of language features, state whether each of activation
records, vectors, and integers should be allocated in a global static area, on the stack, or in the
heap. Choose the best alternative—the one that is both correct and gives the fastest code. Give
a brief (1 sentence) justification for your answer to each part.

A few points first:
The ‘fastest’ storage is the global static area, as you don’t have the
overhead of allocating it. References are via absolute, known addresses.

The stack is next fastest (allocation and freeing are simple additions).
References are via an offset from a pointer.

Heap storage is the slowest, as allocation and freeing are more expensive,
and reference is via a pointer (may need an extra load to fetch pointer).

(a) A language with recursive functions, where integers and vectors can be passed as arguments
and returned as the results of functions.

AR: stack. Cannot be static because of recursion.

Ints: stack. Stored in AR.

Vectors: heap. Cannot be on stack because they outlive the called function
when they are returned (AR of called function is freed when it returns).

(b) A language without recursive functions, where integers and vectors can be passed as argu-
ments and returned as the results of functions.

AR: static. A given function is never active more than once at the same
time (otherwise it would be recursive). So we can allocate one AR only
per function, in the static area.

Ints: static. In the AR as usual.

Vectors: heap. They outlive the called function. They cannot be stored in
the static area because a given function may be called twice and

should return a different vector each time (those who gave this answer,
with the correct justification, got an extra point, we considered

that the ‘static’ answer was correct too).

Fall 95 page 11 of 12

CS 164 Programming Languages and Compilers Handout 13

(c) A language with recursive functions, where integers and vectors can be passed as arguments
but only integers can be returned as the results of functions.

AR: stack. Cannot be static because of recursion.

Ints: stack. Stored in AR.

Vectors: stack. Not returned from functions, so cannot outlive them, so

can be allocated on stack. Cannot be static because several recursive calls
to a function need separate vectors.

Fall 95 page 12 of 12

