http://www-inst.eecs.berkeley.edu/~cs61a/sp06/solutions/mt2

CS 61A Spring 2006 Midterm 2 solutions

1. Box and pointer.

Note: Please draw actual boxes, as in the book and the lectures, not XX and X/
as in these ASCII-art solutions.

Also, please put in the start arrows! Sometimes it's hard to know where your

diagrams are supposed to begin, especially if you use leftward and upward
pointing arrows.

> (cons (list '(a) '(b)) (append '(c) '(d)))
(((a) (b)) c d)

S >XX >R KX/
| |

|
| \Y \Y
| c d
|
\%
XX——=>X/
| |
\% \%
X/ X/
| |
\% \%
a b
The pair marked ** in the diagram above is the value of the
subexpression (APPEND '(C) '(D)), namely, the list (C D).
The CONS sticks one pair in front of that, the pair at the
start arrow. Its car, the first element of the new list, is
the value of (LIST '(A) '(B)), which is ((A) (B)).
> (car (cons '((portia)) '(black . satin)))
((PORTIA))
———>X/
|
X/
|
\%
portia
This should have been really easy, because CAR is an inverse function
of CONS; that is, (CAR (CONS X Y)) is always X, whatever X might be.
So you could entirely ignore the second argument to CONS.
The double parentheses in ((PORTIA)) mean that it's a list of one
element, which is itself a list of one element, a word.
> (caadr '(((a b c) (de f)) ((gh i) (Jk 1)) ((mno) (pgr)))
(g h i)

——>XX———>XX———>X/
| | |
\% \% \%
g h i

This was mainly a test of whether you understand the order of
operations in the C...R functions. CAADR means the CAR of the CAR

of the CDR, not "first do CAR then CAR then CDR"! So we have
(cdr "(((a b c) (de £f)) ((ghi) (7 k1)) ((mno) (pgqgr))))
(car '(((g h 1) (jJ k 1)) ((mn o) (p gr))))

(car '((g h 1) (j k 1)))

(g h 1)

A shortcut to this solution is to remember that CADR returns the
second element of a list, so you can get to ((G H I) (J K L)) in
one step, then take the CAR (the first element) of that.

1of5 5/11/2006 12:10 AM

2 0of 5

http://www-inst.eecs.berkeley.edu/~cs61a/sp06/solutions/mt2

If you did the operations in reverse order, you got the wrong
answer (B C).

> (filter (lambda (x) (if (list? x) (pair? x) (number? x)))
(1 () (2 3) (so) what))
(1 (2 3) (s0))

———>XX——->XX———————— >X/
| | |

\Y4 \Y4 \
1 XX———>X/ X/

| | |

\ \ \
2 3 e}

This was an exercise in understanding FILTER, IF, and predicates.
The IF subexpression returns true for a list that's also a pair
(i.e., not the empty list) or for a non-list that's a number (not
a non-numeric word, for example). So these tests are made:

element first test result second test result
1 LIST? #F NUMBER? #T
() list? #t pair? #f
(2 3) LIST? #T PAIR? #T
(SO) LIST? #T PAIR? #T
what list? #f number? #f

The lines in capital letters show the elements that FILTER keeps.
To solve this problem correctly you also had to understand that
there is no recursion here, so this is not a deep-list problem: the
elements of the elements are not tests (which would have rejected
the word SO).

Scoring: One point for each printed result; one point for each diagram,
except that you lost at most one point for putting gquotation marks in the
printed results.

2. Data abstraction.

This should have been an easy one, but a lot of people had trouble with it.
It's important to know the domains of procedures; FIRSTS's domain is Trees,
but HELPER's domain is forests, not trees, so (DATUM X) makes no sense.

The argument to FIRSTS is a Tree, so its proper selectors are DATUM and
CHILDREN, and to construct a new one you use MAKE-TREE (or you could call it
MAKE-NODE, equivalently). DATUM of this Tree is a sentence, so its selectors
are FIRST and BUTFIRST. CHILDREN of a Tree (the argument to HELPER) is a
forest, which is just a sequence (a list), so its selectors are CAR and CDR,
and its constructor is CONS.

(define (firsts tree)
(MAKE-TREE (FIRST (DATUM tree))
(helper (CHILDREN tree))))

(define (helper x) ; We chose this bad parameter to hide the type!
(if (NULL? x) ; Don't use X in your own programs.
' ()
(CONS (firsts (CAR x))
(helper (CDR x)))))

Scoring: One point off for each error, either failing to change something
that should be changed, or changing something that shouldn't.

3. Understanding Scheme-1.

EVAL-1 deals with *expressions* —-- with the notation in which programs are

expressed. APPLY-1 deals with *values*, including procedures as well as
their arguments, and knows how to call a procedure.

5/11/2006 12:10 AM

30of5

http://www-inst.eecs.berkeley.edu/~cs61a/sp06/solutions/mt2

So (a), which is about the *notation* for a procedure call, and (c), which
is about a special form, are changes to EVAL-1. For (a), we'd add a clause
before line 10, something like

((and (pair? exp) ; exp is a list
(not (null? (cdr exp))) ; of length > 1
(arithmetic—-operator? (cadr exp))) ; 2nd elt. is +-*/

(apply-1 (eval-1 (cadr exp)) ; apply val of oper
(list (eval-1 (car exp)) ; to first elt
(eval-1 (caddr exp))))) ; and third elt

For (c), we'd add a clause somewhere before line 10 saying
((define-exp? exp)
(add-to—-global-table! (cadr exp) ; name is 2nd elt
(eval-1 (caddr exp)))) ; value exp is 3rd

and we'd change line 3 to

((symbol? exp)

(if (found-in-global-table? exp) ; 1f we've defined this name
(value—-in—-global-table exp) ; get value we saved
(eval exp))) ; else ask STk as before

But (b) is about how to call a procedure; we'd change line 17 of APPLY-1 to:

(eval-body (substitute (caddr proc)

where EVAL-BODY evaluates the expressions in turn:

(define (eval-body exprs)

(if (null? (cdr exprs)) ; 1f only one expression left,
(eval-1 (car exprs)) ; return its value
(begin (eval-1 (car exprs)) ; otherwise eval the first one
(eval-body (cdr exprs))))) ; but keep going

The unusual base case reflects the fact that we have to return the value
of the last expression; that's why we can't just use FOR-EACH to evaluate
all the expressions in the body.

Scoring: 2 points each, all or nothing.

4. Function overloading with DDP

Changing the syntax of the parameter list in STk's lambda expressions
would be possible only using tools beyond the scope of this course. We
could build an overloaded DEFINE into Scheme-1, but that's not what the
question asked for. 1Instead we create two new procedures, OVERLOADED
and DEFINE-OVERLOADED.

But these are really just like SICP's implementation of DDP for functions
of possibly more than one argument, using the type signature to find the
correct method. So all you had to do for full credit on this question is
(define define-overloaded put)

(define overloaded apply-generic) ; the one on SICP page 184

Other correct solutions basically involved rewriting one or both of PUT and
APPLY-GENERIC.

Scoring: We allocated 2 points to DEFINE-OVERLOADED, which was pretty much
all or nothing. We allocated 3 points to OVERLOADED, as follows:

3 Correct.
2 Passes typed data to method (doesn't call CONTENTS).

2 Mistakes in dot notation for variable number of arguments.
(method args) instead of (apply method args).

[\

5/11/2006 12:10 AM

http://www-inst.eecs.berkeley.edu/~cs61a/sp06/solutions/mt2

=

Only works for two arguments.
Checks only one type tag.

=

0 Anything worse.

5. Deep lists.

(a) Car/cdr recursion means two recursive calls for each pair, one for the
car, and one for the cdr!

(define
(cond

(deepen 1lst)

((null? 1st) '())

((pair? 1lst) (cons (deepen (car 1lst)) (deepen (cdr 1lst))))

(else (list 1st))))

(b) Using MAP means that the recursion is indirect, through a call to MAP.
Improper lists (pairs whose cdrs are non-null atoms) aren't in the domain of
this procedure; you could have an error check if you wanted, but we don't
require error checks on exams:

(define
(cond

(deepen 1lst)

((null? 1st) '()) ;7 This test is unnecessary but okay.
((list? 1lst) (map deepen 1lst))

((pair? 1lst) (error "no improper lists")) ; Optional.

(else (list 1st))))

A common error on (b) was to try to combine car/cdr recursion with MAP,
like this:

(define (deepen 1lst)

(cond ((null? 1lst) nil)
((atom? (car 1lst)) (cons (list (car lst)) (map deepen (cdr 1lst))))
(else (map deepen 1lst))))

This doesn't work, because the elements of (cdr lst) might be atoms, in which
case the map will fail. But even if it did work, this problem is about
understanding different styles of programming, and you should know how to
write a MAP-based tree recursion cleanly. Such solutions got 2 points out of
4 for part (b).

Scoring: 4 points for each part, as follows:

4 Correct.

3 Has the idea.

2 Has an idea.

0 Other.

Some particular common examples: -2 for LIST or APPEND instead of CONS;

-2 for SYMBOL? instead of ATOM?.

6. Tree search.
The procedure should return #T in two cases:

(1) The two desired data are directly below this node;
(2) A recursive call for some child returns #T.

(define (siblings? tree datuml datum?2)
(define (helper forest)
(cond ((null? forest) #f)
((siblings? (car forest) datuml datum?2))
(else (helper (cdr forest)))))
(or (and (member datuml (map datum (children tree)))
(member datum2 (map datum (children tree))))
(helper (children tree))))

An alternative to using a helper function would be to replace the last
line with

(not (null (filter (lambda (child) (siblings? child datuml datum))

4 of 5 5/11/2006 12:10 AM

50f5

http://www-inst.eecs.berkeley.edu/~cs61a/sp06/solutions/mt2
(children tree))))

This is perfectly acceptable, but less efficient; if the first child satisfies
the condition, it checks the other children anyway. (A useful higher order
function we should have in our library is FIND-FIRST, like FILTER except that
it returns only the first element that satisfies the condition.)

You *can't* avoid a helper by calling SIBLINGS? itself with (CHILDREN TREE) as
its first argument. That argument has to be a tree, not a forest!

You could make this solution slightly more efficient by using

(let ((data (map datum (children tree))))
(or ...))

to avoid calling MAP twice.

Some people, taking advantage of the assumption that an element appears at
most once, used my find-place procedure from lecture to find the path from the
root to each datum, and then see if the butlasts of the paths are the same.
This is a fairly reasonable "use what you have to get what you need" approach
for an exam, if you don't know how to solve the problem properly, but in real
programming it's really inefficient and ugly to create data structures (the
paths) that you don't really need to solve the problem. And this solution
isn't quite correct; it's a data abstraction violation to use BUTLAST on a
path, which isn't a sentence. [You could instead say

(reverse (cdr (reverse path))), making this solution even uglier, but correct.]
Also, your program will be more robust if it doesn't rely on the uniqueness of
the data, a condition that isn't necessary in our solution above.

Scoring:
8 Correct.
7 (NULL? TREE).

6 Tests each node correctly but doesn't accumulate the results correctly.
6 No base case in helper.

5 Forgets the (MAP DATUM ...).
5 Data abstraction violation, but does the right thing.

2 (SIBLINGS? (CHILDREN TREE) DATUM1 DATUM2).

0 Even worse (e.g., no tree recursion).

If you don't like your grade, first check these solutions. If we
graded your paper according to the standards shown here, and you
think the standards were wrong, too bad -- we're not going to grade
you differently from everyone else. If you think your paper was

not graded according to these standards, bring it to Brian or your TA.
We will regrade the entire exam carefully; we may find errors that

we missed the first time around. =)

If you believe our solutions are incorrect, we'll be happy to discuss
it, but you're probably wrong!

5/11/2006 12:10 AM

