CS 61A Midterm #2 — February 28, 1994

Your name

login cs6la—
Discussion section number

TA’s name

This exam is worth 20 points, or about 11.5% of your total course grade. The exam
contains four substantive questions, plus the following:

Question 0 (1 point): Fill out this front page correctly and put your name and login
correctly at the top of each of the following pages.

This booklet contains five numbered pages including the cover page. Put all answers on
these pages, please; don’t hand in stray pieces of paper. This is an open book exam.

When writing procedures, don’t put in error checks. Assume that you will be
given arguments of the correct type.

Our expectation is that many of you will not complete one or two of these questions. If
you find one question especially difficult, leave it for later; start with the ones you find
easler.

CS 3 alumni please note: Don’t use the CS-3-only higher order functions (every,
keep, accumulate) in these problems!!

0 /1
1 /4
2 /5
3 /5
4 /5
total /20



Question 1 (4 points):

What will Scheme print in response to the following expressions? Also, draw a “box and
pointer” diagram for the result of each expression:

(list ’(2 3) (4 5))

(cons (1list 2 3) 4)

(cddadr ’((abcde) (fghij) Imnop) (gqr st uw))

(cons (cdr ’(a)) (cdr ’(b)))



Your name login cs6la—

Question 2 (5 points):

(a) Using the binary tree abstract data type as defined on page 115 of the text (with
selectors entry, left-branch, and right-branch and constructor make-tree), write the
predicate all-smaller? that takes two arguments, a binary tree of numbers and a single
number, and returns #t if every number in the tree is smaller than the second argument.
Examples:

> (define my-tree (make-tree 8 (make-tree 5 () ’())
(make-tree 12 () *(O))))

> (all-smaller? my-tree 15)

#T

> (all-smaller? my-tree 10)

#F

(This question continues on the next page.)



Question 2 continued:

(b) Using all-smaller? and, if you wish, a similar all-larger? (which you don’t have
to write), write a predicate bst? that takes a binary tree of numbers as its argument,
returning #t if and only if the tree is a binary search tree. (That is, your procedure should
return true only if, at every node, all of the numbers in that node’s left branch are smaller
than the entry at the node, and all of the numbers in the node’s right branch are larger
than the entry.)



Your name login cs6la—

Question 3 (5 points):

We are creating a database of the greatest songs in the world. The first step is to define
an abstract data type for a song:

(define title car)
(define artist cadr)
(define make-song list)

Now we set up a global variable great-songs whose value is a list of songs:

(define great-songs (list (make-song ’(she loves you) ’(the beatles))
(make-song ’(waterloo sunset) ’(the kinks))
(make-song ’(pictures of 1ily) ’(the who))
(make-song ’(davy the fat boy) ’(randy newman))
(make-song ’ (expecting to fly)
’(buffalo springfield))
(make-song ’(tell her no) ’(the zombies))))

Your job is to write a procedure who-sang that takes a song title as its argument and
returns the corresponding artist, or #f if the song isn’t one of the greatest in the world:

> (who-sang ’(waterloo sunset))
(THE KINKS)

> (who-sang ’(stairway to heaven))
#F

Respect the data abstraction.



Question 4 (5 points):

We want to combine the techniques of data-directed programming and message-passing as
follows: Instead of using a symbol like complex as a manifest type tag, we’ll use a list of
messages and their associated methods, as in the following example.

> (define complex-methods (1list (cons
(cons
(cons
(cons
> (define (make-complex z)
(attach-type complex-methods z))

’add
’sub
‘mul
’div

+complex)
-complex)
*xcomplex)
/complex)))

Your job is to rewrite operate-2 (from page 144) to work with this new system instead
of using a table of operators and types. If any other procedures must be changed, change
them too. You may leave out the error checks. For your convenience, here is the

book’s operate-2, without its error checks:

(define (operate-2 op argl arg2)
(let ((t1 (type argl)))
(let ((proc (get ti1 op)))

(proc (contents argl) (contents arg2)))))



