CS 60A Midterm #3 — April 20, 1992

Your name

login c60a—
Discussion section number

TA’s name

This exam is worth 20 points, or 12.5% of your total course grade. The exam contains
four substantive questions, plus the following:

Question 0 (1 point): Fill out this front page correctly and put your name and login
correctly at the top of each of the following pages.

This booklet contains six numbered pages including the cover page. Put all answers on
these pages, please; don’t hand in stray pieces of paper. This is an open book exam.

When writing procedures, don’t put in error checks. Assume that you will be
given arguments of the correct type.

Our expectation is that many of you will not complete one or two of these questions. If
you find one question especially difficult, leave it for later; start with the ones you find
easler.

0 /1
1 /4
2 /5
3 /5
4 /5
total /20



Question 1 (4 points):

What will the Scheme interpreter print in response to each of the following expressions?
Also, draw a “box and pointer” diagram for the result of each expression. Hint: It’ll be a

lot easier if you draw the box and pointer diagram first!

(let ((x (list 1 2 3)))
(set-car! x (cdr x))

X)

(let ((x (list 1 2 3)))
(set-cdr! (cdr x) (car x))

X)



Your name login c60a—

Question 2 (5 points):

We want to generate the stream of all composite numbers — that is, all positive integers
that are not prime. The book gives us definitions for the streams integers and primes.
We want to be able to say

(define composites (set-difference integers primes))

Write the function set-difference. It should take two (possibly infinite) ordered streams
as arguments. (In other words, the elements of each stream are numbers in increasing
order.) It should return the stream of all the numbers that are elements of the first
argument but not elements of the second argument.



Question 3 (5 points):

We are going to add magic wands to the adventure game. A magic wand is a kind of
thing that you can possess. When you wave the wand, it transports you instantly to some
particular place. For example:

> (define wand-1 (instantiate wand ’silver shin-shin))
> (ask evans ’appear wand-1)

> (ask brian ’go ’down)

BRIAN MOVED FROM CSUA-OFFICE TO EVANS

> (ask brian ’take wand-1)

BRIAN TOOK SILVER-WAND

TAKEN

> (ask brian ’wave wand-1)

BRIAN MOVED FROM EVANS TO SHIN-SHIN

We need to invent the wand class and to add a wave method to the person class. Here is
the wave method:

(define-class (person name place)

(method (wave wand)
(if (member wand possessions)
(ask wand ’magic)
(error "You don’t own that wand!") ))

Wands must understand a magic message; when a wand gets this message, it asks its
possessor to go-directly-to its predetermined place.

Write the wand class definition.



Your name login c60a—

Question 4 (5 points):

One of the problems in the object system is that an object can’t make direct use of its
parent’s instance variables. For example:

(define-class (counter)
(instance-vars (count 0))
(method (next)

(set! count (1+ count))
count) )

(define-class (incrementer)
(parent (counter))
(method (next amount)
(set! count (+ count amount)) ; This won’t work!
count) )

On the next page is an environment diagram showing the (simplified) result of defining
these classes, and creating an instance

(define upper (instantiate incrementer))

(a) Extend the diagram on the next page to show the result of

((upper ’next) 3) ; Note two invocations.
[This expression is equivalent to the OOP (ask upper ’next 3).]

(b) Briefly explain, with reference to the diagram, why the set! in the incrementer class
doesn’t do what you want.






