
CS61A: Spring 1995 Final

CS61A, Spring 1995
Final

Question 1 (5 points):

(a) Write a function prefix-to-infix that takes a Scheme arithmetic expression as its argument and
returns a list containing the equivalent expression in the ordinary arithmetic notation with operators
between the operands, like this:

> (prefix-to-infix '(+ (* 2 3) (- 7 4)))
((2 * 3) + (7 - 4))
> (prefix-to-infix '(* (remainder 9 2) 5)
((9 remainder 2) * 5)

You may assume that every function in the argument expression has exactly two arguments.

(b) The procedure you wrote in part (a) carries out a tree reordering; in each sublist, the three elements
are rearranged from the original order (0 1 2) to the new order (1 0 2). That is, what used to be
element number 1 now comes first; what used to be element number 0 now comes second, and what used
to be number 2 remains third. We can represent this ordering by the list (1 0 2). We'd like to
generalize this by writing a procedure that takes an ordering as an additional argument, so that we could
say

(define (prefix-to-infix tree)
 (tree-reorder '(1 0 2) tree))

Here's an example of a tree-reorder that isn't a prefix-to-infix :

> (tree-reorder '(2 1 2 1) '((a b c) (d e f) (g h i)))
((i h i h) (f e f e) (i h i h) (f e f e))

What follows is a partial implementation; your job is to fill in the blank.

(define (tree-reorder ordering tree)
 (if (atom? tree)
 tree

 (map ___
 ordering)))

Assume that no number in the ordering is bigger than the length of any sublist; no error checking is
needed.

file:///C|/Documents%20and%20Settings/Jason%20Rafte...20Spring%201995%20-%20Clancy%20-%20Final%20Exam.htm (1 of 6)1/27/2007 6:28:49 PM

CS61A: Spring 1995 Final

Question 2 (5 points):

You are given a possibly infinite stream of lists of numbers. In the following example, the notation
{...} represents a stream, while (...) represents a list:

{(0 1 0 0 3) (1 2 3 0 4 2) (0 0 0 5 0) () (3) ...}

Write a procedure positions that, given such a stream as its argument, returns a stream of two-
element lists showing the positions of the nonzero numbers within the argument. Each two-element list
has the form

(list-number position-within-list)

so for the stream shown above you would produce a stream with elements

{(0 1) (0 4) (1 0) (1 1) (1 2) (1 4) (1 5) (2 3) (4 0) ...}

but not necessarily in the order shown. The elements may appear in any order in your result stream,
provided that any specific element of it is reachable in finite time. Be sure not to confuse lists and
streams! Question 3 (5 points):

(a) As you know, Logo is dynamically scoped. For each of the following Logo procedures, indicate
whether that procedure

{1:} depends on dynamic scope to be able to do its job.

{2:} would work exactly the same under lexical scope.

{3:} might under some conditions give different results under lexical scope.

Indicate your answer by checking one of the choices to the right of each procedure.

to circle.area :radius __ needs dynamic
output :pi * :radius * :radius __ same either way
end __ might matter

to square :num __ needs dynamic
output :num * :num __ same either way
end __ might matter

file:///C|/Documents%20and%20Settings/Jason%20Rafte...20Spring%201995%20-%20Clancy%20-%20Final%20Exam.htm (2 of 6)1/27/2007 6:28:49 PM

CS61A: Spring 1995 Final

to repeated :action :times __ needs dynamic
if :times=0 [stop] __ same either way
run :action __ might matter
repeated :action :times-1
end

(b) As we discussed in lecture, the metacircular evaluator evaluates argument subexpressions either left
to right or right to left, depending on the evaluation order of the underlying Scheme. We can tell this by
examining the procedure list-of-values. For each of the following statements, say whether it's true
or false, give a one-sentence explanation, and indicate which procedure(s) in the metacircular evaluator
determine your answer. This question refers to the evaluator as presented in Abelson and Sussman
section 4.1, not any modified versions.

1. The metacircular evaluator will implement dynamic scope if and only if the underlying Scheme uses
dynamic scope.

2. In some versions of Scheme, the empty list counts as false. (That part is true!) The metacircular
evaluator will consider the empty list to be false if and only if the underlying Scheme interpreter does.

3. The metacircular evaluator will understand the notation

'(1 2 3 . 4)

for an improper list if and only if the underlying Scheme does.

4. The metacircular evaluator will understand the notation

(lambda (arg1 arg2 . rest) ...)

for a procedure with a variable number of arguments if and only if the underlying Scheme does.

Question 4 (5 points):

(a) Write query system rules to implement the {\tt assq} relation, as in this example:

query==> (assq bbb ((aaa . 5) (bbb . 6) (ccc . 7)) ?what)
(assq bbb ((aaa . 5) (bbb . 6) (ccc . 7)) (bbb . 6))

Do not use lisp-value!

(b) Which of the following queries will go into an infinite loop?

___ (assq bbb ((aaa . 5) (bbb . 6) (ccc . 7)) ?what)

file:///C|/Documents%20and%20Settings/Jason%20Rafte...20Spring%201995%20-%20Clancy%20-%20Final%20Exam.htm (3 of 6)1/27/2007 6:28:49 PM

CS61A: Spring 1995 Final

___ (assq ?who ((aaa . 5) (bbb . 6) (ccc . 7)) ?what)

___ (assq bbb ?which (bbb . 6))

___ (assq ?who ((aaa . 5) (bbb . 6) (ccc . 7)) (bbb . 6))

Question 5 (5 points):

(a) Memoize this cc function (from page 38 of Abelson and Sussman):

(define (cc amount kinds-of-coins)
 (cond ((= amount 0) 1)
 ((or (< amount 0) (= kinds-of-coins 0)) 0)
 (else (+ (cc (- amount (first-denomination kinds-of-coins))
 kinds-of-coins)
 (cc amount (- kinds-of-coins 1))))))

You may use procedures from the book if you clearly identify where you found them.

(b) If the un-memoized cc is used to evaluate the expression (cc 12 2), cc is called 49 times, as
shown in the chart below. How many calls to the memoized cc are made as a result of evaluating the
same expression? Briefly explain your answer.

 | cc 12 2 |
 |_________|
 |
 +------------------+---------------------+
 ___|___ ____|___
|cc 12 1| | cc 7 2 |
|_______| |________|
 | |
 +-------------+ +----------------+--------------+
 ___|_______ ___|___ ___|__ ___|__
cc 12 0 = 0		cc 11 1		cc 7 1		cc 2 2
___________		_______		______		______
 | | |
 +-------------+ +-----------+ +---------+
 ___|_______ ___|___ ___|______ __|___ ___|__ ____|______
cc 11 0 = 0		cc 10 1		cc 7 0 = 0		cc 6 1		cc 2 1		cc -3 2 = 0
___________		_______		__________		______		______		___________
 | | |

file:///C|/Documents%20and%20Settings/Jason%20Rafte...20Spring%201995%20-%20Clancy%20-%20Final%20Exam.htm (4 of 6)1/27/2007 6:28:49 PM

CS61A: Spring 1995 Final

 +-------------+ +----------+ +-----------+
 ___|_______ ___|__ ____|_____ __|___ ___|______ __|___
cc 10 0 = 0		cc 9 1		cc 6 0 = 0		cc 5 1		cc 2 0 = 0		cc 1 1
___________		______		__________		______		__________		______
 | | |
 +-------------+ +----------+ +-----------+
 ___|______ ___|__ ____|_____ __|___ ___|______ __|_______
|cc 9 0 = 0| |cc 8 1| |cc 5 0 = 0| |cc 4 1| |cc 1 0 = 0| |cc 0 1 = 1|
|__________| |______| |__________| |______| |__________| |__________|
 | |
 +-------------+ +----------+
 ___|______ ___|__ ____|_____ __|___
|cc 8 0 = 0| |cc 7 1| |cc 4 0 = 0| |cc 3 1|
|__________| |______| |__________| |______|
 | |
 +-------------+ +----------+
 ___|______ ___|__ ____|_____ __|___
|cc 7 0 = 0| |cc 6 1| |cc 3 0 = 0| |cc 2 1|
|__________| |______| |__________| |______|
 | |
 +-------------+ +----------+
 ___|______ ___|__ ____|_____ __|___
|cc 6 0 = 0| |cc 5 1| |cc 2 0 = 0| |cc 1 1|
|__________| |______| |__________| |______|
 | |
 +-------------+ +----------+
 ___|______ ___|__ ____|_____ __|_______
|cc 5 0 = 0| |cc 4 1| |cc 1 0 = 0| |cc 0 1 = 1|
|__________| |______| |__________| |__________|
 |
 +-------------+
 ___|______ ___|__
|cc 4 0 = 0| |cc 3 1|
|__________| |______|
 |
 +-------------+
 ___|______ ___|__
|cc 3 0 = 0| |cc 2 1|
|__________| |______|
 |
 +-------------+
 ___|______ ___|__
|cc 2 0 = 0| |cc 1 1|

file:///C|/Documents%20and%20Settings/Jason%20Rafte...20Spring%201995%20-%20Clancy%20-%20Final%20Exam.htm (5 of 6)1/27/2007 6:28:49 PM

CS61A: Spring 1995 Final

|__________| |______|
 |
 +-------------+
 ___|______ ___|______
|cc 1 0 = 0| |cc 0 1 = 1|
|__________| |__________|

(c) Name a tree-recursive function that would not gain significant efficiency from being memoized.
Explain briefly.

Question 6 (5 points):

We would like to add clubs to the adventure game. A club is a place in which only members are allowed.
If someone who is not a member tries to enter a club, the club will ask the person to go to another place,
the club's outside. For example:

(define Cavern (instantiate club 'Cavern Telegraph-Ave))
(can-go Telegraph-Ave 'east Cavern)
(can-go Cavern 'west Telegraph-Ave)

To join a club, a person sends it an enroll message:

(define George (instantiate person 'George Telegraph-Ave))
(ask Cavern 'enroll George)

Your job is to define the club class.

Do not modify any existing class definitions.

Take a peek at the solutions

file:///C|/Documents%20and%20Settings/Jason%20Rafte...20Spring%201995%20-%20Clancy%20-%20Final%20Exam.htm (6 of 6)1/27/2007 6:28:49 PM

http://hkn.eecs.berkeley.edu/student/online/cs/61A/1995/f.soln.html

	Local Disk
	CS61A: Spring 1995 Final

