CS61A: Spring 1995 Final

CS61A, Spring 1995
Final

Question 1 (5 points):

(a) Writeafunction pr ef i x-t o-i nfi x that takes a Scheme arithmetic expression as its argument and
returns a list containing the equivalent expression in the ordinary arithmetic notation with operators
between the operands, like this:

> (prefix-to-infix '(+ (* 2 3) (- 7 4)))
((2*3) +(7 - 4))

> (prefix-to-infix '(* (remainder 9 2) 5)
((9 remai nder 2) * 5)

Y ou may assume that every function in the argument expression has exactly two arguments.

(b) The procedure you wrote in part (a) carries out atree reordering; in each sublist, the three elements
are rearranged from the original order (O 1 2) totheneworder (1 O 2). Thatis, what used to be
element number 1 now comes first; what used to be element number O now comes second, and what used
to be number 2 remains third. We can represent this ordering by thelist (1 0 2).Wedliketo
generalize this by writing a procedure that takes an ordering as an additional argument, so that we could

say

(define (prefix-to-infix tree)
(tree-reorder '"(1 0 2) tree))

Here'san example of at r ee-reor der thatisntaprefi x-to-infix :

> (tree-reorder '(2121) '((ab¢c) (def) (ghi)))
((i hi h) (fefe (i hih) (f ef e))

What followsis a partial implementation; your job isto fill in the blank.

(define (tree-reorder ordering tree)
(if (atonf? tree)
tree

(map

ordering)))

Assume that no number in the ordering is bigger than the length of any sublist; no error checking is
needed.

file:///CJ/Documents%20and%20Setti ngs/ Jason%20Rafte...20Spring%201995%620-%20Cl ancy %620-%20Fi nal %20Exam.htm (1 of 6)1/27/2007 6:28:49 PM

CS61A: Spring 1995 Final

Question 2 (5 points):

Y ou are given a possibly infinite stream of lists of numbers. In the following example, the notation
{...} representsastream, while(...) representsalist:

{(01003) (123042 (00050 () (3) ...}

Write aprocedure posi t i ons that, given such a stream as its argument, returns a stream of two-
element lists showing the positions of the nonzero numbers within the argument. Each two-element list
has the form

(l'ist-nunber position-within-list)

so for the stream shown above you would produce a stream with elements

{(01) (04 (10 (21) (22 (24 (15 (23 (40 ...}

but not necessarily in the order shown. The elements may appear in any order in your result stream,

provided that any specific element of it is reachable in finite time. Be sure not to confuse lists and
streams! Question 3 (5 points):

() Asyou know, Logo isdynamically scoped. For each of the following Logo procedures, indicate
whether that procedure

{1:} depends on dynamic scope to be ableto do itsjob.
{2:} would work exactly the same under lexical scope.

{3:} might under some conditions give different results under lexical scope.

Indicate your answer by checking one of the choices to the right of each procedure.

to circle.area :radius ___ needs dynam c
output :pi * :radius * :radius ___sane either way
end ___mght matter

to square :num needs dynam c
out put :num?* :num sane either way
end m ght matter

file:///CJ/Documents%20and%20Setti ngs/ Jason%20Rafte...20Spring%201995%620-%20Cl ancy %620-%20Fi nal %620Exam.htm (2 of 6)1/27/2007 6:28:49 PM

CS61A: Spring 1995 Final

to repeated :action :tines ___needs dynam c

I f :times=0 [stop] ___sane either way
run :action ___mght matter
repeated :action :tinmes-1

end

(b) Aswe discussed in lecture, the metacircular evaluator evaluates argument subexpressions either |eft
to right or right to left, depending on the evaluation order of the underlying Scheme. We can tell this by
examining the procedurel i st - of - val ues. For each of the following statements, say whether it's true
or false, give a one-sentence explanation, and indicate which procedure(s) in the metacircular evaluator
determine your answer. This question refers to the evaluator as presented in Abelson and Sussman
section 4.1, not any modified versions.

1. The metacircular evaluator will implement dynamic scope if and only if the underlying Scheme uses
dynamic scope.

2. In some versions of Scheme, the empty list counts as false. (That part istrue!) The metacircular
evaluator will consider the empty list to be falseif and only if the underlying Scheme interpreter does.

3. The metacircular evaluator will understand the notation
"(1 2 3. 4)

for an improper list if and only if the underlying Scheme does.

4. The metacircular evaluator will understand the notation
(lanbda (argl arg2 . rest) ...)

for a procedure with a variable number of argumentsif and only if the underlying Scheme does.
Question 4 (5 points):

(a) Write query system rules to implement the {\tt assqg} relation, asin this example:

query==> (assq bbb ((aaa . 5) (bbb . 6) (ccc . 7)) ?what)
(assq bbb ((aaa . 5) (bbb . 6) (ccc . 7)) (bbb . 6))

Donot usel i sp-val ue!

(b) Which of the following queries will go into an infinite loop?

____(assq bbb ((aaa . 5) (bbb . 6) (ccc . 7)) ?what)

file:///CJ/Documents%20and%20Setti ngs/ Jason%20Rafte...20Spring%201995%620-%20Cl ancy %20-%20Fi nal %620Exam.htm (3 of 6)1/27/2007 6:28:49 PM

CS61A: Spring 1995 Final

____(assq ?who ((aaa . 5) (bbb . 6) (ccc . 7)) ?what)
____(assq bbb ?which (bbb . 6))

____(assq ?who ((aaa . 5) (bbb . 6) (ccc . 7)) (bbb . 6))

Question 5 (5 points):

(d) Memoize this cc function (from page 38 of Abelson and Sussman):

(define (cc anmount ki nds- of - coi ns)
(cond ((= amount 0) 1)
((or (< amount 0) (= kinds-of-coins 0)) 0)
(else (+ (cc (- amount (first-denom nation ki nds-of-coins))
ki nds- of - coi ns)
(cc amount (- kinds-of-coins 1))))))

Y ou may use procedures from the book if you clearly identify where you found them.

(b) If the un-memoized cc isused to evaluate the expression (cc 12 2),cc iscaled 49 times, as
shown in the chart below. How many calls to the memoized cc are made as aresult of evaluating the
same expression? Briefly explain your answer.

| cc 12 2 |
| |
|
S S +
L | _
| cc 12 1| | cc 7 2 |
|l | |l __|
| |
S + SRS TR +
| | | __ _
|cc 12 0 = 0] |cc 11 1| |cc 7 1] | cc 2 2|
| || || | |l I
| | |
SRS + SR + S SN +
| | | __| | __ |
|]cc 11 0 = 0] |cc 10 1] |cc 7 0 =0|] |cc 6 1] |cc 2 1] |cc -3 2 = 0]

file:///CJ/Documents%20and%20Setti ngs/ Jason%20Rafte...20Spring%201995%620-%20Cl ancy %20-%20Fi nal %20Exam.htm (4 of 6)1/27/2007 6:28:49 PM

CS61A: Spring 1995 Final

SRS +
| | __
|cc 10 0 = 0] |cc 9 1]
| || |
|
S RS +
| N
|cc 90 =0 |cc 81
| [
|
SRS +
| I
|cc 8 0 =0 |[|cc 7 1]
| I
|
S RS +
| N
|cc 7 0 =0 |cc 6 1]
| [
|
SRS +
| I
|lcc 6 0 =0 |cc 51
| I
|
S RS +
| N
|cc 50 =0 |[cc 4 1]
| [
|
SRS +
| N
|lcc 4 0 =0 |cc 31
| I
|
RS +
| N
|cc 30 =0 |[cc 2 1]
| [
|
SRS +
| I
|cc 2 0 =0 |cc 1 1f

S SRS + S TN +
| __| | _
|]cc 6 0 =0 |cc 51| |cc 20 =0 |cc 1 1]
| || | | | | |
| |
S SIS + S TSR +
| __| | N D
|lcc 50 =0 |cc 41 |cc10=0 |ccO01=1
| || || | 1
|
S SRS +
| _
|cc 4 0 = 0| |cc 3 1]
| || |
|
S SIS +
| _
|cc 30 =0] |cc 21
| || |
|
S SRS +
| _
|cc 2 0 =0| |cc 1 1]
| || |
|
S SIS +
| N
|lcc 1 0 =0 |[cc01=1

file:///CJ/Documents%20and%20Setti ngs/ Jason%20Rafte...20Spring%201995%620-%20Cl ancy %620-%20Fi nal %620Exam.htm (5 of 6)1/27/2007 6:28:49 PM

CS61A: Spring 1995 Final

(c) Name atree-recursive function that would not gain significant efficiency from being memoized.
Explain briefly.

Question 6 (5 paints):

We would like to add clubs to the adventure game. A club is a place in which only members are allowed.
If someone who is not a member tries to enter aclub, the club will ask the person to go to another place,
the club's out si de. For example:

(define Cavern (instantiate club 'Cavern Tel egraph-Ave))
(can-go Tel egraph- Ave 'east Cavern)
(can-go Cavern 'west Tel egraph-Ave)

Tojoinaclub, aperson sendsit anenr ol | message:

(define George (instantiate person ' George Tel egraph-Ave))
(ask Cavern 'enroll George)

Your job isto definethecl ub class.

Do not modify any existing class definitions.

Take apeek at the solutions

file:///CJ/Documents%20and%20Setti ngs/ Jason%20Rafte...20Spring%201995%620-%20Cl ancy %20-%20Fi nal %20Exam.htm (6 of 6)1/27/2007 6:28:49 PM

http://hkn.eecs.berkeley.edu/student/online/cs/61A/1995/f.soln.html

	Local Disk
	CS61A: Spring 1995 Final

