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CS 61A Midterm #1 - September 14, 1998

Your name 

login:       cs61a- 

Discussion section number 

TA's name 

This exam is worth 20 points, or about 13% of your total course grade. The exam contains five substantive 
questions, plus the following: 

Question 0 (1 point): Fill out this front page correctly and put your name and login correctly at the top of 
each of the following pages. 

This booklet contains seven numbered pages including the cover page. Put all answers on these pages, 
please; don't hand in stray pieces of paper. This is an open book exam. 

When writing procedures, don't put in error checks. Assume that you will be given arguments of the 
correct type. 

Our expectation is that many of you will not complete one or two of these questions. If you find one 
question especially difficult, leave it for later; start with the ones you find easier. 

READ AND SIGN THIS: 

I certify that my answers to this exam are all my own work, and that I have not discussed the exam questions 
or answers with anyone prior to taking this exam. 

If I am taking this exam early, I certify that I shall not discuss the exam questions or answers with anyone 
until after the scheduled exam time. 
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Question 1 (3 points): 

What will Scheme print in response to the following expressions? If an expression produces an error 
message or runs forever without producing a result, you may just say ``error''; you don't have to provide the 
exact text of the message. If the value of an expression is a procedure, just say ``procedure''; you don't have 
to show the form in which Scheme prints procedures. Assume that no global variables have been defined 
before entering these expressions (other than the predefined Scheme primitives). 

(3 + 5)

(butfirst (first (butfirst '(i want to tell you))))

((lambda (a b c) (b a c)) 3 + 5)

(let ((a +)
      (b (a 3 4)))
  (a b b))

(cond ((< 4 7) 5)
      ((> 4 2) 6)
      (else 3))

(se ('tell 'me 'why))

 
 
Question 2 (2 points): 

Imagine that there is a primitive procedure called counter, with no arguments, that returns 1 the first time 
you call it, 2 the second time, and so on. (The multiplication procedure *, used below, is also primitive.) 

Supposing that counter hasn't been called until now, what is the value of the expression 

(* (counter) (counter))

under applicative order? 

under normal order? 

Your name login cs61a- 

Question 3 (4 points): 
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Consider the function defined as follows: 

lg
(1) 

= 0

lg
(n) = lg(n/2)+1,        n > 1

In this problem you will write two Scheme procedures to compute this function. Use the algorithm shown 
above; do not use mathematical functions not shown here, such as expt or sqrt. You may use 
(floor x) to compute x. 

(a) Write a procedure that computes this function using a recursive process. 

(b) Write a procedure that computes this function using an iterative process. 

Question 4 (6 points): 

(a) Write a procedure named constant-fn? that takes two arguments: a function of one argument, and a 
sentence of numbers. It should return #T if the value returned by the function is always the same for all of 
the numbers in the argument sentence. For example: 

> (constant-fn? sqrt '(2 3 4 5 6))
#F

> (constant-fn? (lambda (x) 4) '(5 3 88 2 100 7 8 9))
#T

> (constant-fn? (lambda (a) (< a 10)) '(22 23 24 25 26 27))
#T

> (constant-fn? (lambda (a) (< a 10)) '(5 7 9 11))
#F

Question 4 continues on the next page. 
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Question 4 continued: 

(b) Write a procedure named make-constant-checker that takes a function as argument. It should 
return a function that takes a sentence of numbers as argument, returning #T if the value returned by the 
original function is always the same for all of the numbers in the argument sentence. For example: 

> (define not-spanning-ten (make-constant-checker (lambda (a) (< a 10))))
NOT-SPANNING-TEN

> (not-spanning-ten '(22 23 24 25 26 27))
#T

> (not-spanning-ten '(5 7 9 11))
#F

Question 5 (5 points): 

Suppose you have a sentence of numbers, and you want to find a polynomial function that fits them. The 
first step is to find the smallest possible degree for such a polynomial. (As you should know, the degree of a 
polynomial is the highest power of x in it.) One way to do that is the technique of finite differences : 

If all the numbers are equal, then the polynomial is of degree zero (i.e., it's a constant). 

If not, take the differences between adjacent numbers in the sentence, forming a new sentence with one 
fewer number: 

`#=12`&=12 

> (differences '(1 4 9 16 25 36 49))
(3 5 7 9 11 13)

because 4-1 = 3, 9-4 = 5, and so on. The degree of the polynomial for the original sentence of numbers is 
one greater than the degree of the polynomial for this new sentence. So we keep taking differences: 

`#=12`&=12 
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> (differences '(3 5 7 9 11 13))
(2 2 2 2 2)

This new sentence has degree 0, since all the numbers are equal. So the original sentence has degree 2, 
because we had to take differences twice before reaching a sentence of all-equal numbers. (In fact, the 
original sentence in this example fits the polynomial y = x2.) 

(a) Use your make-constant-checker from question 4 to implement a function all-equal? that 
takes a sentence of numbers as its argument and returns #T if all of the numbers are equal, or #F otherwise. 

This question continues on the next page. 

Your name login cs61a- 

Question 5 continued: 

(b) Write the function differences that takes a non-empty sentence of numbers as its argument and 
returns the sentence of differences, as described on the previous page. 

(c) Using parts (a) and (b), write the function degree that takes a sentence of numbers as its argument, and 
returns the smallest degree of a polynomial that fits those numbers. For example: 

> (degree '(5 5 5 5 5 5))
0

> (degree '(1 4 9 16 25 36 49))
2

Posted by HKN (Electrical Engineering and Computer Science Honor Society) 
University of California at Berkeley 

If you have any questions about these online exams 
please contact mailto:examfile@hkn.eecs.berkeley.edu
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