
CS61A: Midterm #1--Spring 1995

CS61A, Spring 1995
Midterm #1

Question 1 (3 points):

What will Scheme print in response to the following expressions? If an expression produces an error
message, you may just say ``error''; you don't have to provide the exact text of the message. If the value
of an expression is a procedure, just say ``procedure''; you don't have to show the form in which Scheme
prints procedures.

(first (butfirst '(yesterday)))

((lambda (x) x) (lambda (x) x))

((lambda (w) (sentence (word 'h w) (word 'th w))) 'ere)

(+ (* 3 5 0 7) (- 8 2))

(and (> 2 3) (/ 5 0))

(let ((me 'you)
 (you 'me))
 (sentence 'you 'love me))

Question 2 (3 points):

Consider the following code.

(define (all-vowels? wd)
 (cond ((empty? wd) #t)
 ((vowel? (first wd)) (all-vowels? (bf wd)))
 (else #f)))

(define (keep-all-vowels sent)
 (cond ((empty? sent) '())
 ((all-vowels? (first sent))
 (se (first sent) (keep-all-vowels (bf sent))))
 (else (keep-all-vowels (bf sent)))))

List all of the calls to all-vowels?, including recursive calls, during the evaluation of the following
expression:

(keep-all-vowels '(eva ai xxx a))

file:///C|/Documents%20and%20Settings/Jason%20Raft...20Spring%201995%20-%20Clancy%20-%20Midterm%201.htm (1 of 4)1/27/2007 6:28:47 PM

CS61A: Midterm #1--Spring 1995

Question 3 (5 points):

Recently the 61A staff has been playing with the ``four fours'' problem: How many different numbers
can we make by combining four fours with various arithmetic operators? For example, we can make 4 *
(4+4) - 4 which is 28. It turns out that some operators can produce very large results. For example, 4^
{4^4} is a number with 155 digits, and 4^{4^{4^4}} is too large for scm to compute. It's therefore
useful to write ``safe'' versions of the arithmetic operators, like this:

(define (safe-expt base power)
 (cond ((> base 30) #f)
 ((> power 8) #f)
 (else (expt base power))))

The trouble with this is that we can't use safe-expt to provide an argument to some other arithmetic
function, as in this expression:

(+ (safe-expt 4 (safe-expt 4 4)) 4)

because the + procedure will complain if given #f as an argument. To make this system work, we need
false-ok versions of all the arithmetic operators:

> (false-ok-+ 4 4)
8
> (false-ok-+ 4 #f)
#f

Your job is to write make-false-ok, a higher order procedure that takes as its argument an
arithmetic operator like +, returning a version that checks its arguments for falsehood. If either argument
is false, the new version should return false; if not, it should invoke the original operator. So we should
be able to say

(define false-ok-+ (make-false-ok +))

You may assume that the argument to make-false-ok is a function of two arguments.

Read the problem again. Don't write false-ok-+!

Question 4 (3 points):

Given below is a solution to the change counting lab exercise

(define (cc amount coin-sent)

file:///C|/Documents%20and%20Settings/Jason%20Raft...20Spring%201995%20-%20Clancy%20-%20Midterm%201.htm (2 of 4)1/27/2007 6:28:47 PM

CS61A: Midterm #1--Spring 1995

 (cond ((= amount 0) 1)
 ((or (< amount 0) (empty? coin-sent)) 0)
 (else (+ (cc (- amount (first coin-sent)) coin-sent)
 (cc amount (bf coin-sent))))))

Fill in the blanks in the framework below to produce a procedure that returns #t or #f according to
whether change can be made for the given amount using the given coins.

(define (change-possible? amount coin-sent)

 (cond ((= amount 0) ________)

 ((or (< amount 0) (empty? coin-sent)) ________)

 (else (________ (change-possible? (- amount (first coin-sent))

 coin-sent)

 (change-possible? amount (bf coin-sent))))))

Question 5 (5 points):

Write a predicate two-twice? that takes a word as its argument. It should return #t if and only if
there is some sequence of two letters that appears twice in the word:

> (two-twice? 'banana)
#t
> (two-twice? 'alabaster)
#f
> (two-twice? 'mississippi)
#t
> (two-twice? 'decided)
#t
> (two-twice? 'laxxxor)
#t

Notice, in the last example above, that the two pairs overlap (xx twice).

You may use the following procedure to help:

(define (second wd)
 (first (butfirst wd)))

file:///C|/Documents%20and%20Settings/Jason%20Raft...20Spring%201995%20-%20Clancy%20-%20Midterm%201.htm (3 of 4)1/27/2007 6:28:47 PM

CS61A: Midterm #1--Spring 1995

Take a peek at the solutions

file:///C|/Documents%20and%20Settings/Jason%20Raft...20Spring%201995%20-%20Clancy%20-%20Midterm%201.htm (4 of 4)1/27/2007 6:28:47 PM

http://hkn.eecs.berkeley.edu/student/online/cs/61A/1995/mt1.soln.html

	Local Disk
	CS61A: Midterm #1--Spring 1995

