+
ASA N

-

Sk

tne hndroch

xey
lC Wt
oride

NAME

)
N

|
\

CS 61A Midterm #3 L. Rowe
Fall 2002

This examination is open book and notes, but closed {riends! Answer all questions in the space
provided. Some questions have procedures with blank lines where you are to give an answer.
You are to provide one expression for each blank line. If you do not understand a question,
please ask the proctor for clarification.

Circle Login

-a a
-b b
o)
Question Score Total Possible "S : g
1. 1 ‘ (W, {10 possible) -~ s -e e
) _sTLD—‘FE)ILE@ ':.LINTG'CEN\“ITERl 00 possive) 1
3. sle.berkeley.edu (30 pOSSible) p) h h
(510) 642-7332 By ; :
4, (20 possible)- -1 [
by S
5. (20 possible) K «
31)
. 6. (10 possible) - -l [
-m m
TOTA 100 possible) L/ -nn
-0 o
P P
-q q
-r r
-5 L
-t t
-u u
-V v
Oath -ww
=X X
I certify that T am the student whose name appears above. -y y
-Z F4
Signature: -1
Student 1D 2o
Seating £2
‘ On my left: in: O p - j v/
On my right: in: Cobn - oy =

Fall 2002 CS 61 A Midterm #3 1 of 12 pages

1. (10 points, 1 point each part) Answer the following true/false questions:

- ra
@ F A procedure written using functional programming always returns the same value
when called with the same actual arguments.

T @ The class of the Object class is Object in the class hierarchy in a
- conventional OOP language as discussed in lecture.

3
(T F Every class is represented by an instance at run-time.
T) F Aclass variable is shared by all instances of the class.

T B> The exccution of procedures pl and p2 in
(parallel-execute {s pl) (s p2))
using a serializer s produces the same result as executing
(begin (pl} (p2})

/T.) F The Scheme stream abstraction uses a procedural representation that allows a
possibly infinite sequence of values to be represented.

R) F Anenvironment, EZ, is created when calling procedure p. The static and dynamic .
- links for EI point to the same environment unless p was returned as the value of -
another procedure or p was passed to the procedure as an explicit argument.

@ Procedures that take a variable number of arguments cannot be written in Scheme.

An environment is created when a procedure is called and deleted when the
procedure retumns. I

m F A procedure might change state (i.e., use imperative programming) even though it
-7 does not make a direct call on set !, set-car!, or set-cdr!.

2. (10 points) Consider the following definitions:

(define balance 100)
{define (withdraw amount)
(get! balance (- balance amount}))

We know that if we execute the following code, the final value of balance can be 70, 80
or 90. Also, there is no possibility of a deadlock when executing these procedures in parallel:

(parallel-execute (lambda () (withdraw 10})
{(lambda (} ({(withdraw 20)))

Fall 2002 CS 61 A Midterm #3 2 of 12 pages

Now consider these definitions:

{define flagl #f)
{define flag2 #f)
{define balance 100)
{define ({(withdraw amount)

(set! balance (- balance amount)})
{define (test-flagl)

(if flagl {test-flagl} ‘ckay))
{define (test-flag2)

(if flag?2 (test;ﬁlagZ) ‘okay))

Suppose we then execute: - Thwe a(cq"ip

(parallel-execute (lambda ()
{set! flagl #t)
{test-flag?2)

'Z) {withdraw 10)
{set! flagl #£))
{(lambda ()

{set! flag2 i#t)
{test-flagl)
(withdraw 20)
{set! flag2 #£}})

(a) (1 point) Is it possible for both the processes to be executing their calls to withdraw at the
z same time? Circle your answer:;

TN
NG

(b) (3 points) Circle all values of/_\ nceyhat are possible after this code fragment executes:
£70 80 90
{c) (1 point) Is there a possibility of a deadlock here?
NO

Consider the following code along with the definitions of balance, withdraw, £lagl,
flag2, test-flagl, and test-flag2 given above:

{(parallel-execute (lambda ()
(test-flag2)
{set! flagl #t}
{withdraw 10)
(set! flagl #£f})

(lambda ()

{test-flagl)
{(set! flag2 #t)
{(withdraw 20)
{set! flag2 #£f})))

i (d) (1 point) Is it possible for both the processes to be executing their calls to withdraw at the

same time? \/

Fall 2002 CS 61A Midterm #3 3 of 12 pages

(e) (3 points) Circle all values of balance that are possible after this code fragment executes:

() (1 point) Is there a poss1b111ty of a deadlock heic"

3. (30 points) You are to draw environment diagrams for this question. We will give you a
series of Scheme expressions and ask you to draw the diagrams after the expressions have
been executed. You will be given a template to draw the diagrams that includes boxes for
environments and double-bubbles for procedure definitions. You are to show: 1) what

E%(Mwﬁﬁﬁ_tb&ﬁﬂlmt, 2) what variables are bound in the environment

and the value bound to the variable, and 3) the static link for the environment. For procedure
values, you must show the formal argument list, the body of the procedure, and the defining
environment. Not all boxes and double-bubbles need be used in the answer, and you can add
boxes and double-bubbles if there are not enough.

{(a} (8 points) Show the environment after the following code is executed:

(define {square x} {(* x x))
(square 3)

Ketuns 94 @

Global e @ 0 yloeal e,

Sq/\/.kc.‘&v' €. —"___-/—-—_’.j (-y \’(nﬂig:%\otv‘)
@ Args:

Body:

Args: ~L -
T Body:(* %x\)g £l @

1V (*xx) Args:.
< o Body:

Fall 2002 CS 61A Midterm #3 4 of 12 pages

(b) (2 point) What value is printed by the following code? Lé
{define (g) 1)

efie £ {define foo 4 .
I~ (let ((y 5)) .. -
("/“'“Jj 2@ Tiambda (£) ((f 9) yf))) (d‘ﬁ pessed ¥ § oy
P FE)
i \-{\ (foo {lambda (s) [lambda (£) (+ (s)€n§))
i ‘ E 2
\”“ < (c) (20 points) Show the environment after the code in part b) is executed
; . 4/
— -+
LS / ‘
S 9
Args: N
Body: (-* (<) ‘H
,//
sl bal
Globa
C a

+I
= 00
\ + Args: <
Body: 15m
2 "
€2 T
N SN PO 0

l { Args: -/

A _ Body: cinba. g

| = VL S E 2
Args: C

Bod (1.) § €2

5 of 12 pages

4. (20 points) Numbers can be represented in different bases. We are taught base 10 when we

learn basic arithmetic. Computers, on the other hand, use base 2 to represent numbers and
implement arithmetic.

(a) (12 points) Following are two packages that implement addition and subtraction in base 2
and base 10. Fill-in-the-blanks in the code so that all numbers returned by functions in
these packages are tagged with base2 or base10 as appropriate, and the procedures for
operating on these data types (i.e., add, sub, and make~num) are entered into the
global table using put and retrieved using get, which are defined below.

(define (install-base-2-package)
;; private procedures

(define (base2toll num_2) -
; procedure to convert base 2 numbers to base 10

) . et

{define (basellto2 num_10)
; procedure to convert base 10 numbers to base 2

)

;7 public functions
(define (make-base-2-num num 10)
(basel0to2 num_10))

(define (add numl_2 num2_2)
(baselOto2 (+ (base2toll numl_2) (base2tol0 num2_2))))

(define (sub numl_zfnum2_2)
(basellto2 (- (base2toll numl_2) (base2toll num2_2))))

;; install procedures)
{define (tag x)} (attach- tag ‘base2 x)) /1/

(\9 Wt m (bct‘f’ 2\ Mg~ bmcl mnn\\'
(pz/\Jr “ad (bose 2 \ c\a\{-))
(pnt b (beoezy sub)

‘done)
(define (install-base-10-package)
;: install procedures
(define (tag x) {attach-tag ‘basel0 x))

(\’PV\J(\@m (bav/ lf)) Pstie hasrttrm ;\/
[le\—!r "o (beee (’D\ oA A
(ram—‘r lsub | 'pas (m\ Gy)

‘done)

Fall 2002 CS 61A Midterm #3 6 of 12 pages

You can use the following two procedures to modify the table:

(define (put op type item)
; puts the procedure item into the table for
; operation op and type typé

)

{define (get op type)
; gets the procedure for operation op on type type

}

(b) (2 points) Fill-in the following table to show what mappings have been defined after the
above two lines of code are executed. (i ‘J’ch\l bccee 2 TP \((-(8@)

{o : \
Types -

' &>
b ase 2 Ba e 10) &%ﬂﬁjw

dd
? ar)c'\’ bose 2 m

’2. - k: /_ Y

Operations

g - e - bose? make - Wy Yorute l b

(c) (6 points) Fill-in the code to make the numbers five and ten in base 2 and add them to get
fifteen in base 2. Remember these procedures are being evaluated in the global

envirenment.
,b\(,

(define flve o
/(_EZ\JC‘\: /—u\ @36&6@2\\ 5))

{define ten_|2

([3{—\/ Letke — vl \(ba%zp 10))

(define fifteen 2

((%t)(Lo {(bdﬁeél\ tineo 2 ﬁenl\,)

©

Fali 2002 CS 61A Midterm #3 7 of 12 pages @

5. (20 points) Consider the following class and procedure definitions:

{define-class {(Food name) P
(instance-vars (Cook-history *{)))
{class-vars (all-food ()}
{initialize {set! all-food (cons self all-food}))
{method {(cook style)
{(sett! Cook-history ({(cons style Cook-history)))
{method (food-name)
name))

(define-class (Cake name)
(parent (Food name))
{instance-vars (color ‘brown))
{initialize (ask self ‘cook ‘bake)})

(define-class (Non-homemade-food name)
{parent (Food (word ‘Yum name)}) (/;EZDLL— “6}422%3\
{instance-vars (popularity 20}) B
(method (cook style)
(append! (ask self ‘Cook-history) (list style))
(ask self ‘'Cook-history)) o~
{method (food-name)
{usual ‘focd-name}))

{define-class (Mass-produced-products name company)
{instance-vars (popularity 10))}
{class-vars (all-products '()})}
{initialize (set! all-products (cons self all-products})))

(define-class (Packaged-snacks name company)
(parent (Mass-produced-products name company)
(Non-homemade-food name) }
{instance-vars (plastic-wrapped #¢t))
{method (unwrap)
(set! plastic-wrapped #£f))
{method {(food-name)
{usual ‘food-name}))

(define-class (Twinkie name)

(parent (Packaged-snacks name ‘Hostess)
(Cake (word ‘'‘Tasty name))}

{class-vars {(color ‘yellow))

{method (what-am-1i)
{usual ‘name))

(method (name-change newname)
(set! name newname)
name}

{(method (food-name)
(usual ‘food-name})

{method (make-moldy) Al
{set! color ‘green}))

Fall 2002 CS 61 A Midterm #3 8 of 12 pages

; procedure used in method in Non-homemade-food
{(define (append! x y)
(define (last-pair a}
(if {null? (cdr a)}

a _ ~ Ol’ﬁ ;'6 :
(last-pair (cdr aj))) M ’{jD
(set-cdr! (last-pair Jy) _e\/d

x)

(a) (6 points) Draw the class hierarchy for the classes defined above. You do not need to
show the Object and Class classes, just the classes defined using the Scheme QOP

system.
N
— s —
) Foee) 7 Gk
- ' Prod:

v
g vﬂ\/

_— Nmﬂ
L_C,‘ZL ~Gm4

’. P(‘M\anr]

S,
f—p—fw.“\be'{/
—

(b) (7 points, 1 point each) Below is a sequence of statements typed into Scheme after
loading the classes defined above. Fill-in-the-blanks with the return value for the
immediately preceding statement. We have intentionally omitted the return values for

@ some statements, so as not to give away the answer. .]

/> (define mytwink (instantiate Twinkie ‘mytwink))
> (ask mytwink ‘name-change ‘vyummy) 4
> (ask mytwink ‘what-am-i) ' ‘ e

v ean ¥

(define vourtwink (instantiate Twinkie ‘yourtwink))
{(ask vourtwink ‘make-moldy)
> (ask mytwink ‘coloer)

v

/

v

Q Cef V)
J
’T : > (ask mytwink ‘Cook-histozry)

SEROATY

Fall 2002 CS 61 A Midterm #3 9 of 12 pages

> {ask mytwink ‘cock ‘freeze)
O’:‘ > (ask mytwink ‘cook ‘batter)

g{-&e‘aw) (ftte \A\j |

> (define a-banana (instal?tiate Foocd ‘banana) ch —> }\A}
> (ask a-banana ‘cook ‘fried)
> (ask a-banana ‘Cook-history) fooa

C-G-r”'\ e FAS

> (define cupcake (instatiate Cake ‘cupcake)
‘/ > {(ask cupcake ‘food-name)

CAP Ak e

>< > {ask mytwink *food-name)
mM;/“l"‘fv'\f\\{-

(c) (7 points) We want to define a method, named n_usual, that is similar to the
predefined usual method. The n_usual method looks for methods and variables in
the n™ level superclass as opposed to the immediate superclass. The class of an instance
is the 0" level ancestor, the immediate parent of this class is the 1* level ancestor, and so ‘T’
forth.

The n_usual method takes two arguments: 1) level — the level to be examined and 2)
; message — the name of a method that takes no arguments. For example,

(define-class (A name)

(method (n_usual n message) ...)) o
{define-class (B name}
{parent (A {(word ‘i name}))}) ... {

{method {(n_usual n message) ...))

{define-class {C name)
(parent (B (word ‘am name))) ... 7
(method (n_usual n message) ...))

(define myC (instantiate C ‘oski))
(ask myC ‘n_usual 2 ‘name)
The last statement would return the name *iamoski. Contrast this example with
{usual message)
‘ which is not a method but an OOP construct because we do not need to use the expression
{ask class ‘usual ‘megsage) @

Fall 2002 CS 61A Midterm #3 10 of 12 pages

Using the OOP constructs we already have available (e.g., ask, parent, usual,
initialize, default-method, etc.) write a method n_usual that can be added
to every class of an inheritance hierarchy to implement this semantics. n_usua1l should
call the first method found that matches the message at that level. It only has to work for

single inheritance (i.c., the solution we have in mind will not work for multiple
inheritance).

Fill-in the following template:

(method (n_usual level message)
(cond ({equal? level 0)
(ask self message))
{ {equal? level 1)

‘=B wsuch) mzf;-f)cﬁe\)

“"ézi. (else

7 “ \
B sac) N _voua) level V) - 6O)aff)

6. (10 points) Answer the following questions about streams.
’. (a) (2 points) The Scheme expression
{define x {(cons 1 x))

when executed gives an error “unbound variable x.” However, the following expression

{define v {cons-stream 1 vy))

does not produce an error message. In fact, it defines an infinite stream of 1’s. Explain
briefly why the second expression does not cause an error while the first expression does.

o ocenrs becomse Cervs - ety eam s Cﬂ/;ﬁégégﬁca\-ﬁgfwﬂ
hose arawﬂx@m{s ave not evaluactes) | N owalL 0\,\!\/
be alucded when [+ 15 @rced

Fall 2002 CS 61A Midterm #3 11 of 12 pages

{b) (2 points} Given the following definitions for infinite streams:

(define (stream-map proc sl s2)
{cons-stream P
(proc (stream-car sl) (stream-car s2))
(stream-map proc (stream-cdr sl}) {(stream-cdr =2))})

(define {add-streams sl s2) {stream-map + sl s2))

; define stream of 1’s and positive integers
(define ones {cons-stream 1 ones))
(define positive-integers
(cons-stream 1 (add-streams ones positive-integers)))

Describe the stream returned by:

(stream-map (lambda {a b) a) ones positive-integers)

e gvvecnvy LUl be an) AE| ,\yé—h e &€
oYL

(¢) (6 points) You are to create a stream of functions that includes the so—callec@bil_a
functions, that is, a stream with the functions .

car
cdr

caar
cadr
cdar
cddr

Here is a template for creating this stream. You are to fill-in the blanks. Hint: you might
find it convenient to have the first function in the stream return a CxR function with no x
(1.e., the procedure returns the list passed to it as an argument).

{define (composdfzié) _~_{;
{lambda (x) (£ (g x)}})

{define cxrs
{cons-stream
{lambda {x) x)

1
(1nterleave‘ CCOh\P@ﬁ: (e W C?Cﬁé\

((Comoaﬁp/\;\ (r)\ C%W\)))

. Fall 2002 CS 61A Midterm #3 12 of 12 pages

