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CS 162 Midterm Exam
March 1996

Note that exam total is out of 70, not out of 100.  Answers in italics.

Your Name: Ms. Perfect

Your TA:

Your Section:

General Information:

This is a closed book examination. You have 90 minutes to answer
as many questions as possible.  The number in parentheses at the
beginning of each question indicates the number of points given to
the question; there are 70   points in all. Write all of your answers
directly on this paper.  Make your answers as concise as possible
(you needn't cover every available nano-acre with writing). If there
is something in a question that you believe is open to interpretation,
then please go ahead and interpret but state your assumptions in
your answer.

Problem 1: (5 points)

Of the following items, circle those that are stored in the thread
control block.

Answer: a, c, f, g
(a) CPU registers

(b) page table pointer

(c) stack pointer

(d) ready list

(e) segment table

(f) thread priority

(g) program counter
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Problem 2: (10 points)

Write down the sequence of context switches that would occur in
Nachos if the “main” thread were to call the following code.  Assume
that the CPU scheduler runs threads in FIFO order, with no time-
slicing and all threads having the same priority.  The WillJoin flag is
used to signify that the thread will be joined to by its parent.  For
example,  “child2 => child1” would signify that child2 switches to
child1.

void
Thread::SelfTest2() {
    Thread *t1 = new Thread("child 1", WillJoin);
    Thread *t2 = new Thread("child 2", WillJoin);

    t1->Fork((VoidFunctionPtr) &Thread::Yield, t1);
    t2->Fork((VoidFunctionPtr) &Thread::Yield, t2);
    t2->Join();
    t1->Join();
}

main -> child1 -> child2 -> child1 -> child2 -> main
(If you assumed an implementation of join that V’ed the child to
ask it to finish itself, then there would be an additional couple
switches at the end -- we didn’t take off for this..)

Note that neither creating nor forking a thread switches to the child
thread (assuming no preemptions occur)-- the parent keeps the CPU
throughout, and just puts the child on the ready list.  In the above
example, the children don’t start running until “main” calls join.

Also note that when I fork the function Yield, when Yield runs, it will
first call switch, then come back from switch, then the thread
finishes.  A common error was to assume that once Yield called
switch, it never came back.

We gave some people half credit if we could deduce that you made
only one of these errors.
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Problem 3: (10 points)

For the following implementation of Thread::Join(), say whether it
either (i) works, (ii) doesn’t work, or (iii) is dangerous -- that is,
sometimes works and sometimes doesn’t.  If the implementation
does not work or is dangerous, explain why and show how to fix it so
it does work.

You may assume parents always call Thread::Join() on their children
threads; Thread::Join is a method on the child thread, not the parent.

class Thread {
  Semaphore *finished; // synch parent and child

  Thread::Thread() {
finished = new Semaphore(0); // initial value = 0
// plus other standard stuff from the Nachos code

  }

  Thread::~Thread() {
     delete finished;
     // plus other standard stuff from the Nachos code
  }
};

void // called by parent to wait for child thread
Thread::Join()
{
    finished->P(); // wait for thread to finish
}

void // called by child thread when it is done
Thread::Finish()
{
    Thread *oldThread = kernel->currentThread;
    Thread *nextThread;

    (void) kernel->interrupt->SetLevel(IntOff);
// first turn interrupts off

    finished->V(); // then wake up parent
    delete this; // deallocate current thread

         nextThread = kernel->scheduler->FindNextToRun());
// find the next thread to run

    kernel->currentThread = nextThread;
    SWITCH(oldThread, nextThread);

// context switch to it
}
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Answer to problem 3: This is dangerous.  There are actually 3 things
wrong with the implementation:

1. if child finishes before parent gets to join, thread is deleted (along
with semaphore used for synchronizing the parent and child).  So
when parent calls join, it is referencing a deallocated data structure
(and someone else may in the meantime have allocated it for some
other purpose, overwriting the semaphore value).

2. regardless of whether the parent gets to join before or after the
child finishes, the child deletes its thread while still running in the
context of the thread.  This means the thread is still referencing its
stack, even though the space for the stack may have been reallocated
for some other purpose (and thus things like procedure call and
return won’t work properly).

3. There is no guarantee in Thread::Finish that there is another
thread to run; thus, FindNextToRun might return NULL.

All three of these errors only show up sometimes, if exactly the right
sequence of events occurs.  For example, using data that has been
deleted is dangerous, since it will only show up if the memory
allocator hands out that data region again.  You won’t get an error if
the memory allocator hands out some other data region.)

We were mainly looking for the first 2, so if you got both of those,
and your fix worked, we gave you full credit.  The simplest fix is to
move the “delete this” to the last line in Thread::Join().

The most common error was noticing only one of the problems; we
gave half credit if you came up with either of the first two problems.

Among the other common errors: (1) using an extra semaphore to
have the child thread wait until the parent called join.  This fixes #1,
but not #2.  (2) saying that the problem was that interrupts were
never reenabled -- in Nachos, as in other systems, the thread that
wakes up after a SWITCH is responsible for reenabling interrupts.
(3) not realizing that Join is an operation on the child thread, even
though the parent thread is the one that calls Join -- both Join and
Finish operate on the same object and thus use the same semaphore.
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Problem 4: (10 points)

For the following implementation of atomic transfer, say whether
it either (i) works, (ii) doesn’t work, or (iii) is dangerous -- that is,
sometimes works and sometimes doesn’t.  If the implementation
does not work or is dangerous, explain why and show how to fix it so
it does work.

The problem statement is as follows: The atomic transfer rout ine
dequeues an item from one queue and enqueues it on another.  The
transfer must appear to occur atomically: there should be no interval
of time during which an external thread can determine that an item
has been removed from one queue but not yet placed on another.  In
addition, the implementation must be highly concurrent -- it must
allow multiple transfers between unrelated queues to happen in
parallel.  You may assume that queue1 and queue2 never refer to
the same queue.

void AtomicTransfer (Queue *queue1, *queue2) {

   Item thing; /* thing being transferred */

   queue1->lock.Acquire();

   thing = queue1->Dequeue();

   if (thing != NULL) {

      queue2->lock.Acquire();

      queue2->Enqueue(thing);

      queue2->lock.Release();

   }

   queue1->lock.Release();

}

This is dangerous, since it may (but does not always) lead to
deadlock.  If one thread transfers from A to B, and another transfers
from B to C and another from C to A, then you can get deadlock if
they all acquire the lock on the first queue before any of them
acquire the second.

The best fix from the point of view of maximizing concurrency is to
use resource ordering -- to acquire both locks at the beginning of the
routine, lowest addressed queue first:



6

void AtomicTransfer (Queue *queue1, *queue2) {

   Item thing; /* thing being transferred */

   if (queue1 < queue2) {

      queue1->lock.Acquire();

      queue2->lock.Acquire();

   } else { // queue2 < queue1

      queue2->lock.Acquire();

      queue1->lock.Acquire();

   }

   thing = queue1->Dequeue();

   if (thing != NULL) {

      queue2->Enqueue(thing);

   }

   // release order doesn’t matter

   queue1->lock.Release();

   queue2->lock.Release();

}

Another fix is to use a global lock -- this is not highly concurrent so
we gave only partial credit for it.  For example, you could put a
global lock around the entire routine.  Another fix is to use a global
lock just to acquire the two queue locks, then release the global lock
before dequeueing and enqueueing -- this is an example of acquiring
all resources at the beginning.  However, it is still not very
concurrent: for example, if a thread needs to wait for one of the
queue locks, then because it holds the global lock, no one else can
make progress.

A common error was to say that the original code did not provide an
atomic transfer, because another thread can access queue2 after the
item has been removed from queue1.  However, although the item
has been removed from queue1 and not yet put on queue2, the
external thread cannot observe this, since it can’t get a lock on
queue1 -- it can’t tell if the item has been removed from queue1 or
not.  So from the point of view of an external thread, the transfer is
atomic -- the external thread sees the state of the world either as it
was before the transfer was made, or after, but not partway through.
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Problem 5: (15 points)

A countermeasure  is a strategy by which a user (or an application)
exploits the characteristics of the CPU scheduling policy to get as
much of the CPU time as possible.  For example, if the CPU scheduler
trusts users to give accurate estimates of how long each job will run
so that it can give high priority to short jobs, then a countermeasure
would be for the user to tell the system that the user’s jobs are
always short (even if untrue).

Devise a countermeasure strategy for each of the following CPU
scheduling policies; your strategy should minimize an individual
application’s response time (even if it hurts overall performance).
You may assume perfect knowledge -- for example, your strategy
can be based on which jobs will arrive in the future, where your
application is in the queue and how long the jobs ahead of you will
run before blocking.  Your strategy should also be robust -- it should
work properly even if there are no other jobs in the system, or there
are only short jobs, or only long running jobs, etc.  If no strategy will
improve your application’s response time, then indicate that.

Note that this question asked how you could improve a single job’s
response time, not how you could improve average response time
across all jobs.  Also note that the question is impractical in that it
assumes you can have perfect knowledge; in practice,
countermeasures are not as efficient as the ones described below.

(a) last in first out

If you assume LIFO is non-preemptive, then the best
countermeasure is to insert your job onto the queue just before the
currently running job finishes.  The problem with this is what if your
job does I/O?  It would be hard to arrange for your I/O to complete
just before another job finishes, which leads to the kill & restart
approach outlined below.

If you assume LIFO is preemptive, then if another thread preempts
your job (and that thread will take a long time), then you can kill
your job and restart it -- the restarted job will go on the front of the
queue. Alternatively, you might have your job, right before it is
preempted, create a copy of itself and kill the original.  If the copy
does a brief Alarm::WaitUntil, it can leap over the arriving job back
to the front of the line.
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 (b) round robin, assuming jobs are always put at the end of the
ready list when they become ready to run

We gave full credit if you said no countermeasure possible.
However, a few of you came up with clever solutions -- for instance,
carving up your job into pieces, each of which runs for less than a
time slice.

(c) multilevel feedback queues, where jobs are always put on the
highest priority queue when they become ready to run

Similar to (a), one approach is, right before a higher priority job
would preempt you, fork a job to run the remaining part of your job
(or do a little bit of I/O at this point) This way, your job would
always be high priority.  Many suggested always doing I/O right
before getting time-sliced, but this is inefficient if you are the only
runnable job -- remember multilevel feedback timeslices every job
to drop its priority, even if there is no one else at that priority level.
We gave a large share of credit for this.  Some simply said, do lots of
I/O; again, that will work, but it is inefficient.

As with (b), another possible countermeasure is carving up your job
into pieces, each of which runs for less than the minimum time slice.
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Problem 6: (20 points)

For the following implementations of the “H20” problem, say whether
it either (i) works, (ii) doesn’t work, or (iii) is dangerous -- that is,
sometimes works and sometimes doesn’t.  If the implementation
does not work or is dangerous, explain why and show how to fix it so
it does work.

Here is the original problem description:  You've just been hired by
Mother Nature to help her out with the chemical reaction to form
water, which she doesn't seem to be able to get right due to
synchronization problems.  The trick is to get two H atoms and one O
atom all together at the same time.  The atoms are threads.  Each H
atom invokes a procedure hReady   when it's ready to react, and each
O atom invokes a procedure oReady   when it's ready.  For this
problem, you are to write the code for hReady   and oReady .  The
procedures must delay until there are at least two H atoms and one O
atom present, and then one of the procedures must call the
procedure makeWater   (which just prints out a debug message that
water was made). After themakeWater   call, two instances of
hReady   and one instance of oReady   should return.  Your solution
must avoid starvation and busy-waiting.

You may assume that the semaphore implementation enforces FIFO
order for wakeups -- the thread waiting longest in P() always grabs
the semaphore after a V().
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Problem 6 (a) Here is a proposed solution to the “H20” problem:

int numHydrogen = 0;

Semaphore pairOfHydrogen(0); // init 0

Semaphore oxygen(0); // initially 0

void hReady() {

numHydrogen++;

if ((numHydrogen % 2) == 0) {

pairOfHydrogen->V();

}

oxygen->P();

}

void oReady() {

pairOfHydrogen->P();

makeWater();

oxygen->V();

oxygen->V();

}

This solution is dangerous.  Threads calling hReady() access shared
data without holding a lock!  Many of you talked about what would
happen if you got a timeslice after the increment and before the test,
but remember that you can also get a timeslice in the middle of a C
statement.  For example, you could have N threads both increment
numHydrogen, and because they do so without a lock, the result
could be 1 instead of N -- in other words, no water would be made
regardless of how many H’s arrived.

The solution is to put a lock acquire before the first line in hReady,
and release before the Semaphore::P.  Some put the lock acquire after
the increment, and that simply doesn’t work!
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Problem 6 (b) Another proposed solution to the “H20” problem:

Semaphore hPresent(0); // initially 0
Semaphore waitForWater(0); // initially 0

void hReady() {

hPresent->V();

waitForWater->P();

}

void oReady() {

hPresent->P();

hPresent->P();

makeWater();

waitForWater->V();

waitForWater->V();

}

This is dangerous, since it may lead to starvation.  If two H’s arrive,
then the value of the hPresent semaphore will be 2.  If two O’s
arrive, then they can each decrement hPresent, before either can
decrement it twice.  So no water is made, even though enough atoms
have arrived.

The fix is to put a lock acquire before the first line in oReady, and a
lock release after the two semaphore:P’s.  This way, only one oxygen
looks for waiting H’s at a time -- if there aren’t enough H’s for the
first oxygen, there won’t be enough for any of the later oxygens
either.
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Extra Credit Question: (2 points)

Which provides the best average response time when there are
multiple servers (bank tellers, supermarket cash registers, airline
ticket takers, etc.): a single FIFO queue or a FIFO queue per server?
Why?  Assume that you can’t predict how long any customer is going
to take at the server, and that once you pick a queue to wait in, you
are stuck and can’t change queues.

A single queue is better.  Consider what happens if when you arrive,
no one is waiting, but every server is busy.  You’d much rather wait
in a single queue for the first server that becomes free, than have to
commit to one of the queues -- it’s likely you would be waiting while
there is a server free.  In queueing theory terms, multiple queues for
multiple servers is not “work conserving” -- a server can be idle
even though there are people/jobs waiting.  A single queue is always
work conserving.

There’s a much more rigorous mathematical proof of why single
queues are better than multiple queues in Kleinrock, Queueing
Theory, Volume 1, along with lots more useful stuff.  For instance, if
you arrive at a random point in time at a bus stop, and the buses
arrive at fixed intervals, then your average wait will be the half the
inter-bus interval.  What happens if the buses arrive randomly, but
with the same average inter-bus interval?  It turns out randomness
hurts -- your average wait will always be longer than if the buses
arrive at fixed intervals.


