
CS 162, Midterm #2, Spring 2000, SOLUTIONS

CS 162, Spring 2000 (April 10, 2000) SOLUTIONS
Midterm #2

Prof. Michael J. Franklin

General Information:
This is a closed book examination. You have 1 hour and 20 minutes to answer as many questions as
possible. Partial credit will be given. There are 100 points in all. You should read all of the questions
before starting the exam, as some of the questions are substantially more time-consuming than others.

Write all of your answers directly on this paper. Be sure to clearly indicate your final answer for each
question. Also, be sure to state any assumptions that you are making in your answers.

Please try to be as concise as possible.

Problem Possible Score

1. CPU Scheduling (5 parts) 20 20

2. Demand Paging (6 parts) 30 30

3. Caching (3 parts) 20 20

4. Address Translation (3
parts)

20 20

5. Disk Management (2 parts) 10 10

TOTAL 100
101 (can't
add)

Problem #1 [5 parts, 20 points total]: CPU Scheduling

a) (4 points) Assume that 3 processes all with requirements of 1 second of CPU time each and no I/O
arrive at the same time. What will be the average response time (i.e., average time to completion) for
the processes under FIFO scheduling?

ANSWER: 2 seconds, no partial credit

b) (4 points) Answer part "a" for Round Robin (RR) scheduling assuming a timeslice of 0.1 sec and no
overhead for context switches (i.e., context switches are free).

ANSWER: 2.9 seconds, no partial credit

c) (4 points) Answer part "a" for Shortest Job Finish (SJF) scheduling.

file:///C|/Documents%20and%20Settings/Jason%20Rafte...0Spring%202000%20-%20Franklin%20-%20Midterm%202.htm (1 of 8)1/27/2007 4:02:23 PM

CS 162, Midterm #2, Spring 2000, SOLUTIONS

ANSWER: 2 seconds, no partial credit

d) (4 points) Multilevel Feedback Queue Scheduling (MFQS) is a fairly good, general CPU scheduling
algorithm, but as initially described in class, can lead to starvation under certain circumstances. Briefly
describe how starvation can occur using MFQS and how to modify MFQS so that starvation can be
avoided.

ANSWER: Long jobs on low-priority queues can starve if a continuous stream of short jobs keep the
high-priority queues full. Soln: hold a lottery among the QUEUES, weighted in favor of short queues
OR
implement aging, so that jobs that remain on low-priority queues for a long time are promoted.
2 pts for starvation explanation
2 pts for correct solution

e) (4 points) What advantage is there in having different time-quantum (i.e. timeslice) sizes on different
levels of the MFQS approach?

ANSWER:
1) different time quanta help differentiate between long and short jobs
2) for long jobs, short quanta mean unnecessary context switches (so different time quanta improve
throughput)
3) Introduces more fairness
The first two answers received full credit.
Fairness received 2 points

Problem #2 [6 parts, 30 points total]: Demand Paging

a) (3 points) Consider a demand paging system that use 4 KByte pages. In such a system, does a Least
Recently Used (LRU) page replacement policy exploring temporal locality? If so, then how? If not,
why not?

ANSWER:
Yes, LRU keeps recently used pages in memory and temporal locality says that these pages are likely to
be accessed in the near future.
1 point for yes + 2 points for a good justification (-1 point for a flaky or waffling answer).

b) (3 points) Consider a demand paging system that use 4 KByte pages. In such a system, does a Least
Recently Used (LRU) page replacement policy exploit spatial locality? If so, then how? If not, why
not?

ANSWER:
Yes. It exploits temporal locality within a page by bringing in 4KBytes at a time and keeping the most

file:///C|/Documents%20and%20Settings/Jason%20Rafte...0Spring%202000%20-%20Franklin%20-%20Midterm%202.htm (2 of 8)1/27/2007 4:02:23 PM

CS 162, Midterm #2, Spring 2000, SOLUTIONS

recently accessed page in memory. Temporal locality says that other bytes in that page are likely to be
accessed in the near future. (grading note: not all replacement policies support temporal locality even if
large pages are used--for example, MRU does not exploit it.)
1 point for yes + 2 points for a good justification (-1 point for a flaky or waffling answer).

c) (6 points) Consider a demand paging system with four physical memory frames and the following
reference string over seven pages:
1, 2, 3, 4, 2, 1, 5, 6, 2, 1, 2, 3, 7, 6 Assuming that memory starts empty, how many page faults will
occur and what will be the final contents of memory under the FIFO page replacement policy? Circle
your answers.

ANSWER:
1,3,6,7 in memory and 11 page faults
3 points for right memory contents and 3 points for right fault count.
-2 if made a simple mistake in one of these, -3 or -4 if additional simple mistakes. -1 or -2 if you didn't
follow directions and made have [sic] to hunt for your answer.

d) (6 points) Answer the problem of part "c" for the LRU policy. Recall that the reference string is: 1,
2, 3, 4, 2, 1, 5, 6, 2, 1, 2, 3, 7, 6. Circle your answers.

ANSWER:
2,3,6,7 in memory and 9 page faults
Same grading as "c".

e) (6 points) Answer the problem of part "c" for the MIN (i.e., optimal) policy. Recall that the reference
string is: 1, 2, 3, 4, 2, 1, 5, 6, 2, 1, 2, 3, 7, 6. Circle your answers.

ANSWER:
Several valid answers for contents -- 6, plus any 3 of 1,2,3,7 was possible. 7 page faults.
Same grading as "c".

f) (6 points) Suppose that you want to use a paging algorithm that requires a reference bit (such as
clock or working set) for each frame but the hardware for which you are implementing your operating
system does not provide one. Briefly describe how you could simulate one and state (in general terms)
what the main costs of your approach would be.

ANSWER:
The main idea here was to have the operation system maintain its own array of reference bits (that's the
easy part) the tricky part is that the OS must somehow learn about the accesses made to pages. The best
way to do this was to mark pages as invalid so that an access to the page causes a trap to the OS, which
can do the bookkeeping (of course, the OS must keep extra information around to be able to tell which
page table entries are truly invalid). The clock algorithm could reset the invalid bit when it checked an
accessed page. The extra costs are additional traps to the OS just for normal references (depend on how
fast your clock moves) and extra complexity in the OS.

file:///C|/Documents%20and%20Settings/Jason%20Rafte...0Spring%202000%20-%20Franklin%20-%20Midterm%202.htm (3 of 8)1/27/2007 4:02:23 PM

CS 162, Midterm #2, Spring 2000, SOLUTIONS

Grading: -4 if you didn't say how the OS could learn about accesses. Note that setting the page
permission to read-only doesn't work here, because we want to trap on reads. -2 if you didn't say what
the costs of your solution were, or your costs were wrong.

Problem #3 [3 parts, 20 points total]: Caching -- Hungry Aliens Revisited

(Use the following parameter values to answer the parts of this question. Clearly show your work in
order to get partial credit.)

PEarth Probability that the pasta can be found on Earth 0.20

PMoon Probability that the pasta can be found the
Moon

0.50

PPluto Probability that the pasta can be found on Pluto 1.0

LEarth Time required to try Earth 10 minutes

LMoon Time required to try 100 minutes

LPluto Time required to try
2000
minutes

a) (6 points) Earth and Pluto -- Assume an alien has arrived on earth looking to eat his favorite type of
Pasta (no need to worry about how many arms the alien has). He starts looking on Earth, if he can't find
it there, he flies his space shit to Pluto where he knows they always have that kinda of pasta (in this
case, if the pasta is not on Earth, it will take 2010 minutes for the Alien to get the pasta). On average,
how long should it take for the Alien to find his pasta?

ANSWER:
Ave. Access Time = L_earth + (1-P_Earth) * L_Pluto
= 10 + (1 = 0.2) * 2000
= 1610 minutes
6 points for correct solution
5 points for correct formula but incorrect numerical answer
2 points for incorrect solution (e.g. forgot L_Earth is required regardless of hit or miss)
0 otherwise

b) (6 points) Add the moon -- Now consider the case where the pasta may also be located on the moon
(according to the probabilities and miss penalties shown above). In this case, how long should it take
for the Alien to find his pasta (assuming he goes from Earth to the Moon, and then to Pluto if
necessary)?

ANSWER:

file:///C|/Documents%20and%20Settings/Jason%20Rafte...0Spring%202000%20-%20Franklin%20-%20Midterm%202.htm (4 of 8)1/27/2007 4:02:23 PM

CS 162, Midterm #2, Spring 2000, SOLUTIONS

Ave. Access Time
= L_Earth + (1 - P_Earth) [L_Moon + (1 - P_Moon)(L_Pluto)]
= 10 + (1 - 0.2)[100 + (1 - 0.5)(2000)]
= 890 minutes
6 points for correct solution
5 points for correct formula but incorrect numerical answer
2 points for incorrect solution (e.g. forgot L_Earth is required regardless of hit or miss)
0 otherwise

c) (8 points) For the problem in part "b" above, for what values (if any) of LMoon would it make sense

for the Alien to skip searching the moon and go straight to Pluto?

ANSWER:
The alien should skip the moon if the part from part b is larger than the answer from part a.
That is:
L_earth + (1 - P_Earth)[L_Moon + (1 - P_Moon)(L_Pluto)] > 1610
10 + (1 - 0.2) [L_Moon + (1 - 0.5)(2000)] > 1610
L_Moon > 1000 minutes
8 points for correct solution
-2 if you forgot or made an error with the > or >= sign
-2 if you clearly set up the problem correctly but got the answer wrong due to error from previous part
-6 if you didn't set up the problem correctly
-2 if you solved for P_Moon instead of L_Moon

Problem #4 [3 parts, 20 points total]: Address Translation

a) (5 points) Suppose we have a 40-bit virtual address separated into an x-bit virtual page number and
(40 - x) -bit page offset. Using basic single page table scheme, what is the maximum number of entries
in the page table and what is the size of each page (in bytes)?

ANSWER:
2^x page table entries (2 points)
2^(40-x) bytes per page (3 points)
1 point for saying 2^(40-x) page table entries and 2^x bytes per page

b) (5 points) Briefly describe what an Inverted Page Table is. List one advantage and one disadvantage
of Inverted tables compared to traditional page tables.

ANSWER:
1 point for identifying that the inverted page table translates virtual page numbers for physical page
numbers.
1 point for acknowledging the importance of the process ID in looking up entries in an inverted page

file:///C|/Documents%20and%20Settings/Jason%20Rafte...0Spring%202000%20-%20Franklin%20-%20Midterm%202.htm (5 of 8)1/27/2007 4:02:23 PM

CS 162, Midterm #2, Spring 2000, SOLUTIONS

table.
1 point for recalling that a hash table or other secondary index is always used to make look-ups more
efficient.
1 point for identifying a valid advantage (e.g. fixed table size, global, never needs to be paged, handles
sparse address spaces well). fast is NOT an advantage, because inverted page tables are being
compared to traditional page tables, which are faster.
1 point for identifying a valid disadvantage (e.g. slower, complex, difficult to implement in hardware,
harder to map multiple virtual pages to a single physical page, need additional per-process tables,
synchronization problems of using a global page table).

c) (10 points) Consider an architecture combining segmentation and page with 32-bit addresses divided
into fields as follows:

4-bit seg
id

12 bit page
number

16 bit offset into
page

SegID
Page Table
Ptr

Page Table
Size

0 0x20000 0x4

1 0x30000 0x4

2 Not Valid -----

3 0x10000 0x4

4 Not Valid -----

... Not Valid -----

15 Not Valid -----

Given the contents of physical memory shown on the left [bottom in the case of this html file] and the
segment table above, what is the physical address do the following virtual addresses map to (if a virtual
address is invalid, stat why) (2 points a piece):
0x00001234 =
0x100001234 =
0x11111234 =
0x20021234 =
0x30031234 =

Address Value

0x10000 0x10

 0xA

 0xB

file:///C|/Documents%20and%20Settings/Jason%20Rafte...0Spring%202000%20-%20Franklin%20-%20Midterm%202.htm (6 of 8)1/27/2007 4:02:23 PM

CS 162, Midterm #2, Spring 2000, SOLUTIONS

 0x5

... ...

0x20000 0x3

 0x7

 0x5

 0x9

... ...

0x30000 0x6

 0x4

 0x8

 0x11

... ...

ANSWER:
0x31234
0x61234
invalid - virtual page num. exceeds size of segment
segment 2 does [sic] is not valid
0x51234
(valid: 2 points for right address;
invalid: 1 pt for saying invalid; 1 pt for reason)

Problem #5 [2 parts, 10 points total]: Disk Management

a) (5 points) Compare the performance of the FAT structure used by MS-DOS (where file blocks are
linked in an external structure) to that of the basic "linked allocation" techniqu (where file blocks are
linked together via points in each block) in terms of sequential access and random access. Be sure to
state any assumptions you are making in terms of what if anything is memory resident.

ANSWER:
For random access, the FAT structure will have fewer number of I/Os than the basic linked allocation
technique. For the FAT structure at most 2 I/Os are needed to find a random page. The basic linked
allocation technique will require reading N-1 pages to access the Nth page.

For the sequential access, the basic linked allocation technique will have fewer number of I/O requests
than the FAT structure. The basic linked allocation will follow the pointer on a page to find the next
page. the FAT structure will need to access the FAT and the actual page for every page request.

file:///C|/Documents%20and%20Settings/Jason%20Rafte...0Spring%202000%20-%20Franklin%20-%20Midterm%202.htm (7 of 8)1/27/2007 4:02:23 PM

CS 162, Midterm #2, Spring 2000, SOLUTIONS

3 pts for random
2 pts for sequential
For sequential access, we also accept the assumption that FAT is in memory, so the FAT structure will
have about the same number of I/O requests as the basic link allocation technique. But the assumption
will have to be stated in the answer.

b) (5 points) The UNIX BSD 4.1 inode structure is intended to support both small files (e.g., several
KBytes) and large files (e.g. up to some number of GBytes) efficiently. Briefly describe the mechanism
employed to achieve this and state a potential problem of the approach for performance when accessing
large files.

ANSWER:
The file structure consists of a file header which contains 13 pointers. The first 10 pointers are pointing
to actual data pages of the file. The 11th pointer is a singly linked pointer. It is a pointer to a page of
256 pointers, which point to actual data pages. The 12th pointer is a doubly linked pointer and the 13th
pointer is a triply linked pointer. Small files will utilized these first 10 points. Large files will need to
use the 11th, 12th, or possibly the 13 pointer.

so a potential performance problem with the large files is following the triply linked pointer before
reading the actual data page. This requires extra I/Os for following links.

3 pts for getting the structure correct
-1 for having some numbers wrong
-1 for not describing the linked structure

2 pts for a valid problem with large files

Posted by HKN (Electrical Engineering and Computer Science Honor Society)
University of California at Berkeley

If you have any questions about these online exams
please contact mailto:examfile@hkn.eecs.berkeley.edu

file:///C|/Documents%20and%20Settings/Jason%20Rafte...0Spring%202000%20-%20Franklin%20-%20Midterm%202.htm (8 of 8)1/27/2007 4:02:23 PM

mailto:examfile@hkn.eecs.berkeley.edu

	Local Disk
	CS 162, Midterm #2, Spring 2000, SOLUTIONS

