George M. Bergman

Fall 2000, Math 104, Section 2

3 October, 2000

9 Evans Hall

First Midterm

11:10-12:30 PM

- 1. (28 points, 7 points apiece) Complete each of the following definitions. (Do not give examples or other additional facts about the concepts defined.)
- (a) A metric space is
- (b) A set X is said to be *countable* if
- (c) The radius of convergence R of the power series $\sum_{n=0}^{\infty} c_n z^n$ is defined to be
- (d) If S is an ordered set, E a subset of S, and x an element of S, then we call x the *least upper bound* of E, and write $x = \sup E$, if
- 2. (40 points; 10 points each.) For each of the items listed below, either give an example, or give a brief reason why no example exists. (If you give an example, you do not have to prove that it has the property stated.)
- (a) A non-convergent Cauchy sequence (a_n) in a metric space X.
- (b) A sequence of points in the interval $[0,1] \subseteq R$ having no convergent subsequence.
- (c) A convergent series $\sum a_n$ such that $\lim_{n\to\infty} |a_{n+1}|/|a_n| = 1$.
- (d) A family of subsets $G_{\alpha} \subseteq R$ (where α ranges over some set A) such that every finite subfamily $\{G_{\alpha_1}, \ldots, G_{\alpha_n}\}$ has nonempty intersection, but the whole family has empty intersection, $\bigcap_{\alpha \in A} G_{\alpha} = \emptyset$.
- 3. (32 points) Let X be a metric space and K a compact subset of X.
- (a) (12 points) Show that for every real number $\varepsilon > 0$ there exists a finite subset $S \subseteq K$ such that $(\forall x \in K)(\exists s \in S)$ $d(x, s) < \varepsilon$; i.e., such that each point of K is within distance $< \varepsilon$ of some point of S.
- (b) (20 points) Deduce from the result of (a) that K contains a finite or countable subset T which is dense in K. (Recall that a subset of K is called *dense* if every point of K is a member of the subset or a limit point of the subset. Suggestion: apply part (a) to a countable sequence of values of ε which approach 0.) In doing this part you may assume the result of (a) even if you did not succeed in proving it.