MATH 126: FINAL, SPRING, 2000

There are six problems in the exam. Do all of them. Total score: 175 points.

Problem 1.

(i) (10 points) Find the general solution of the PDE

$$u_x - 2yu_y = 0.$$

on $\mathbb{R}_x \times \mathbb{R}_y$.

- (ii) (10 points) Now impose in addition that $u(0, y) = y^2$. Find u explicitly.
- (iii) (10 points) Consider the PDE

$$u_x - 2yu_y + u = 0$$

on $\mathbb{R}_x \times \mathbb{R}_y$. Find its general solution.

Problem 2. Consider the function f(x) = x on the interval $[0, \pi]$.

- (i) (10 points) Find the coefficients of the Fourier cosine series, $A_0/2 + \sum_{n=1}^{\infty} A_n \cos nx$, of f.
- (ii) (7 points) Show explicitly that this Fourier series converges uniformly on $[0, \pi]$.
- (iii) (7 points) Which function does this Fourier cosine series represent outside the interval $[0, \pi]$? Sketch its graph on $[-2\pi, 2\pi]$.
- (iv) (6 points) We wish to approximate f by a function g of the form $a_0 + a_2 \cos 2x$ on $[0, \pi]$. Find the constants a_0 and a_2 that minimize the L^2 error of the approximation.

Problem 3. (25 points) For both of the following functions f on [0, l], state whether the Fourier cosine series on [0, l] converges in each of the following senses: uniformly, pointwise, in L^2 . If the Fourier series converges pointwise, state what it converges to for each $x \in [0, l]$. Make sure that you give the reasoning that led you to the conclusions.

- (i) $f(x) = x(\sin(\pi x/l))^2$,
- (ii) f(x) = 0, for $0 \le x \le l/2$, and f(x) = 1 for $l/2 < x \le l$.

Problem 4. Let D be a bounded region (open set) in \mathbb{R}^2 , and let h be a given continuous function on the boundary of D. We wish to solve the Dirichlet problem for the Laplacian, i.e. we wish to find a function $u \in C^2(D) \cap C^0(\overline{D})$ that is harmonic on D, i.e. $\Delta u = 0$ on D, and u is equal to the given function h on the boundary of D.

- (i) (8 points) State the maximum principle for harmonic functions.
- (ii) (8 points) Is the solution of this problem unique (if it exists)? Explain briefly why.
- (iii) (7 points) If u solves this problem, can you say for sure that u is smoother than C^2 in the open set D? Why?
- (iv) (7 points) Suppose $h \ge 0$ on the boundary of D, and u solves this problem. Show that u > 0 on \overline{D} .

1

2

Problem 5. In this problem we consider a square plate of size a with three sides kept at temperature 0, and the fourth at a specified temperature. We wish to find the steady state temperature u = u(x, y) of the plate. That is, we wish to solve $u_{xx} + u_{yy} = 0$ on $D = (0, a)_x \times (0, a)_y$, $u \in C^2(D) \cap C^0(\overline{D})$, with boundary conditions u(x, 0) = 0, u(x, a) = 0 for $0 \le x \le a$, u(0, y) = 0, u(a, y) = g(y), $0 \le y \le a$, where g is a given continuous function, g(0) = 0 = g(a).

 (i) (15 points) Using separation of variables, show that the general solution of the PDE with the homogeneous boundary conditions is

$$u(x,y) = \sum_{n=1}^{\infty} A_n \sinh(n\pi x/a) \sin(n\pi y/a).$$

- (ii) (10 points) Find A_n in terms of g.
- (iii) (5 points) If $g(y) = \sin(2\pi y/a)$, find u explicitly.

Problem 6. We want to solve the forced wave equation $u_{tt} - c^2 u_{xx} = f(x,t)$ on the interval [0, l] with homogeneous Dirichlet boundary conditions u(0, t) = 0, u(l, t) = 0, and initial conditions u(x, 0) = 0, $u_t(x, 0) = 0$. Below you may assume that f is continuous, f(0,t) = f(l,t) = 0 for all t. Recall that the solution of the forced wave equation $v_{tt} - c^2 v_{xx} = F(x,t)$ on $\mathbb{R}_x \times \mathbb{R}_t$ with vanishing initial conditions is given by

$$v(x,t) = \frac{1}{2c} \int_{\Delta} F = \frac{1}{2c} \int_{0}^{t} \left(\int_{x-a(t-s)}^{x+c(t-s)} F(y,s) \, dy \right) \, ds;$$

here Δ is the backward characteristic triangle from (x, t).

- (i) (10 points) Which is the appropriate extension of f to $\mathbb{R}_x \times \mathbb{R}_t$ that reduces the solution of the original problem to that of a problem on the whole real line? Write down the solution of the original problem.
- (ii) (10 points) Suppose that $|f(x,t)| \leq M$ for all $(x,t) \in [0,l] \times \mathbb{R}$. Show that $|u(x,t)| \leq Mt^2/2$.
- (iii) (10 points) Find a constant C > 0 such that $|u(x,t)| \leq Ct$ for all t > 0.