MATH 126: MIDTERM 1, SPRING, 2000

Total score: 100 points.

Problem 1.

(i) (15 points) Find the general solution of the PDE

$$u_x + xu_y = x^2$$

(ii) (10 points) Now impose in addition the initial condition u(0, y) = y. Find u explicitly.

Problem 2. Suppose that u = u(x,t) solves the heat equation

$$k = k u_{xx}, \ (x,t) \in (0,l) \times (0,\infty), \ k > 0,$$

with Dirichlet boundary conditions

 u_t

$$u(0,t) = 0, u(l,t) = 0,$$

and initial condition $u(x,0) = \phi(x)$ where ϕ is a non-negative function.

- (i) (8 points) Show that $u(x,t) \ge 0$ for all $(x,t) \in (0,l) \times (0,\infty)$.
- (ii) (8 points) Show that $u_x(0,t) \ge 0$, $u_x(l,t) \le 0$ for t > 0. (Hint: consider difference quotients.)
- (iii) (9 points) Let $Q(t) = \int_0^t u(x,t) dx$ be the total heat at time t. Show that Q is a decreasing function of time. (Hint: what is Q'(t)?)

Problem 3. Consider the PDE

$$u_{tt} + u_{xt} - 2u_{xx} = 0, \quad (x,t) \in \mathbb{R} \times \mathbb{R}.$$

- (i) (8 points) What is its type?
- (ii) (15 points) Find the general solution of the PDE.

Problem 4. Consider the wave equation

$$egin{aligned} u_{tt} &= c^2 \, u_{xx}, \ (x,t) \in \mathbb{R} imes (0,\infty) \ u(x,0) &= \phi(x) \ u_t(x,0) &= \psi(x). \end{aligned}$$

- (i) (7 points) What is the domain of influence of a point $(x_0, 0)$?
- (ii) (8 points) Suppose $\phi(x) = 0$ and $\psi(x) = 0$ if $|x| \ge R$, R > 0 a constant. Where (i.e. for what (x,t)) can you conclude that u(x,t) = 0? Where can you conclude that u(x,t) is infinitely differentiable? Sketch these regions.
- (iii) (12 points) Suppose that ϕ and ψ are as in (ii). Show that for any $R_0 > 0$, there exist T > 0 and a constant u_0 such that $|x| \le R_0$, $t \ge T$ imply $u(x,t) = u_0$. (This means that for sufficiently large times t, u is constant over compact regions of space.) Also, express u_0 in terms of the initial conditions ϕ , ψ . You may use the explicit formula for the solution of this initial value problem:

$$u(x,t) = \frac{1}{2}(\phi(x+ct) + \phi(x-ct)) + \frac{1}{2c} \int_{x-ct}^{x+ct} \psi(s) \, ds.$$