MATH 142: EXAM 1

MONDAY, MARCH 3 ZOO3 Westin

- 1. (10 points) Let $f: X \to Y$ be a continuous map of topological spaces with X connected. Prove that the image f(X) of f is connected (where as always f(X) is given a topology as a subspace of Y).
- 2. In (a)-(b) below you are given a subset A of a topological space X. Determine the closure of A in X. You should explain your answer, but a formal proof is unnecessary.
 - (a) (5 points) $A = \left\{ \frac{a}{2^n} ; a, n \in \mathbb{Z}, n \geq 0 \right\}$ the set of all rational numbers with denominator a power of 2, regarded as a subspace of $X = \mathbb{R}$ with the Euclidean topology;
 - (b) (5 points) A = the graph of the polar equation $r = \frac{\theta}{1+\theta}$ for $\theta > 0$ in $X = \mathbf{R}^2$ with the Euclidean topology. (Hint: $r = \theta$ is the usual polar spiral, and the graph above is simply the composition of this with $r \mapsto \frac{r}{1+r}$.)
 - 3. Let X be a topological space and let

$$\Delta := \{(x,x) \in X \times X \; ; \; x \in X\} \subseteq X \times X$$

be the diagonal. Let $f: X \to X$ be a continuous map, and let

$$\Gamma_f: X \to X \times X$$

$$x \mapsto (x, f(x))$$

be the graph of f.

- (a) (10 points) Prove that X is Hausdorff if and only if Δ is closed in $X \times X$.
- (b) (3 points) Prove that

$$\Gamma_f^{-1}(\Delta) = \{ x \in X ; f(x) = x \}.$$

(c) (3 points) Prove that if X is Hausdorff, then

$$\{x \in X : f(x) = x\}$$

is a closed subset of X.

4. Let X be the topological space which as a set is simply the set of real numbers, but which has basis of open sets consisting of half-open intervals

$$[a,b) = \{x \in \mathbf{R} \; ; \; a \le x < b\}$$

for $a, b \in \mathbf{R}$, a < b. (Thus an arbitrary open set in X is a union of such half-open intervals.)

- (a) (5 points) Prove that X is Hausdorff.
- (b) (4 points) Prove that X is not connected.
- (c) (5 points) Is the open interval (0,1) open in X? Prove your answer.