Math 115 First Midterm Exam

Professor K. A. Ribet February 25, 1998

Instructions: Answer question #2 and three other questions.

1 (6 points). Find all solutions to the congruence $x^2 \equiv p \mod p^2$ when p is a prime number.

2 (9 points). Using the equation $7 \cdot 529 - 3 \cdot 1234 = 1$, find an integer x which satisfies the two congruences $x \equiv \begin{cases} 123 \mod 529 \\ 321 \mod 1234 \end{cases}$ and an integer y such that $7y \equiv 1 \mod 1234$. (No need to simplify.)

3 (7 points). Suppose that p is a prime number. Which of the p + 2 numbers $\binom{p+1}{k}$ ($0 \le k \le p+1$) are divisible by p? [Example: The seven binomial coefficients $\binom{6}{k}$ are 1, 6, 15, 20, 15, 6, 1; the middle three are divisible by 5.]

4 (7 points). Let p be a prime and let n be a non-negative integer. Suppose that a is an integer prime to p. Show that $b := a^{p^n}$ satisfies $b \equiv a \mod p$ and $b^{p-1} \equiv 1 \mod p^{n+1}$.

5 (6 points). Show that $n^4 + n^2 + 1$ is composite for all $n \ge 2$.