P. Vojta

Math 54M Second Midterm

Spring 2001

- 1. (15 points) Let $A = \begin{bmatrix} 3 & 18 & 10 & 2 & 7 \\ 1 & 6 & 2 & -3 & -4 \\ 2 & 12 & 8 & 5 & 11 \\ -1 & -6 & 0 & 10 & 7 \\ 6 & 36 & 12 & -21 & -11 \end{bmatrix}$. Find a basis for:
 - (a). RS(A)
 - (b). CS(A)
- 2. (10 points) Find the coordinates of (1, 2, -8) relative to the basis

$$B = \{(-1,3,1), (2,-4,-3), (-3,8,2)\}.$$

3. (15 points) Find the equation of the line that best fits the points

in the least-squares sense.

4. (15 points) Find an orthonormal basis for the subspace of \mathbb{R}^4 spanned by the vectors

$$(1,2,3,4), (0,6,4,9), (-1,10,5,14)$$
.

- 5. (15 points) Find the determinant of the matrix $\begin{bmatrix} 1 & 2 & 7 & -5 \\ 2 & 6 & 11 & 1 \\ -1 & 0 & -6 & 13 \\ -2 & 0 & -15 & 33 \end{bmatrix}.$
- 6. (15 points) Let $A = \begin{bmatrix} 3 & 0 & 0 \\ -6 & 3 & -2 \\ 6 & 0 & 5 \end{bmatrix}$.
 - (a). It has a double eigenvalue $\lambda = 3$. Find a basis for the corresponding eigenspace.
 - (b). Find the third eigenvalue of A.
- 7. (15 points) Let $A = \begin{bmatrix} 7 & -6 \\ 3 & -2 \end{bmatrix}$. Find a 2×2 matrix B such that $B^2 = A$.

[Hint: How would the eigenvalues and eigenvectors of A be related to those of B?]